期刊文献+

一种应用机载LiDAR数据和高分辨率遥感影像提取城市绿地信息的方法 被引量:24

A Method for Urban Vegetation Classification Using Airborne LiDAR Data and High Resolution Remote Sensing Images
下载PDF
导出
摘要 提出了一种新的面向对象的城市绿地信息两阶段提取方法。该方法分阶段使用高分辨率遥感影像的光谱和2维形态信息以及机载LiDAR数据的3维形态信息作为分类依据。第1阶段,影像首先被分割为对象,对象被分类为无阴影的植被、阴影下的植被、水体、建筑物、空地和阴影6类地物;无阴影的植被和阴影下的植被合并为城市绿地对象,在第2阶段,将LiDAR数据产生的归一化数字表面模型nDSM与绿地对象叠加,计算每个对象的3维形态属性,进一步将绿地对象细分为草坪、灌木和乔木。以美国休斯敦中心城区为例,介绍了方法流程。精度分析表明,绿地的分类精度达到93.46%;方法中的主要误差来源于遥感影像当中的建筑物阴影以及生成数字地形模型时所产生的误差。 The urban vegetation is a principal biological component of the urban landscape. Identifying and mapping the urban yegetation are important to urban management and planning. This paper presents a new object-based two-stage method to classify urban vegetation using airborne LiDAR data and high resolution aerial photographs through a case study of downtown Houston, USA. By exploiting the spectral information plus 2D geometric attributes from high resolution aerial photographs and 3D morphological information from airborne LiDAR data, a detailed and accurate classification of urban vegetation has been achieved. In the first stage, the aerial photographs are segmented into image objects. Based on the spectral and 2D geometric attributes, these objects are divided into six categories: non-shaded vegetation, shaded vegetation, water, building, open space, and shade. Vegetation objects, including non-shaded and shaded vegetation, are derived separately. In the second stage, the normalized Digital Surface Model derived from airborne LiDAR data is introduced to characterize the 3D geometric properties (height and roughness ) of each vegetation object. Based on these properties, the vegetation objects are further classified into trees, shrnbs/hedges, and grass-covered lawns. The overall classification accuracy of vegetation is analyzed and reported as high as 93.46%. The sources of errors are ascribed to the shade in aerial photo and the miscalculation of Digital Terrain Model from LiDAR data. This research suggests that the combination of morphological information of LiDAR and the spectral information from image data renders a powerful tool for a detailed investigation of urban vegetation.
出处 《中国图象图形学报》 CSCD 北大核心 2010年第5期782-789,共8页 Journal of Image and Graphics
基金 上海市科技攻关重大项目(07DZ12037)
关键词 城市绿地 面向对象分类 两阶段分类 LIDAR 高分辨率遥感影像 urban vegetation, object-based classification, two-stage classification, LiDAR, high resolution remote sensing image
  • 相关文献

参考文献32

  • 1Taha H,Douglas S,Haney J.Mesoscale meteorological and air quality impacts of increased urban albedo and vegetation[J].Energy and Buildings,1997,25(2):169-177.
  • 2Akbari H.Shade trees reduce building energy use and CO2 emissions from power plants[J].Environmental Pollution,2002,116:S119-S126.
  • 3中华人民共和国建设部.城市绿化规划建设指标的规定[S].建城[1993]784号.
  • 4徐新良,庄大方,张树文,邹亚荣.运用RS和GIS技术进行城市绿地覆盖调查[J].国土资源遥感,2001,13(2):28-32. 被引量:32
  • 5Barr S,Barnsley M.Reducing structural clutter in land cover classifications of high spatial resolution remotely-sensed images for urban land use mapping[J].Computers & Geosciences,2000,26(4):433-449.
  • 6Baatz M,Schape A.Multiresolution segmentation--An optimization approach for high quality multi-scale image segmentation[C]//Strobl J,Baschke T,Griesebner G(eds).Angewandte Geographische Informationsverarbeitung XII.Heidelberg,Germany:Wichmann-Verlag,2000:12-23.
  • 7Benz UC,Hofmann P,Willhauck G,et al.Multi-resolution,object-oriented fuzzy analysis of remote sensing data for GIS-ready information[J].ISPRS Journal of Photogrammetry and Remote Sensing,2004.58(3-4):239-258.
  • 8Shackelford A K,Davis C H.A combined fuzzy pixel-based and object-based approach for classification of high-resolution multispectral data over urban areas[J].IEEE Transactions on Geoscience and Remote Sensing,2003,41(10):2354-2363.
  • 9Wang L,Sousa W P,Gong P.Integration of object-based and pixel-based classification for mapping mangroves with Ikonos imagery[J].International Journal of Remote Sensing,2004,25(24):5655-5668.
  • 10Gac Y,Mas J F,Maathuis B H P,et al.Comparison of pixel-based and object-oriented image classification approaches--a case study in a coal fire area,wuda,inner mongolia,China[J].International Journal of Remote Sensing,2006,27(18):4039-4055.

二级参考文献39

  • 1周俊,晏非,孙曼.基于区域分割合并的建筑物半自动提取方法[J].海洋测绘,2005,25(1):58-60. 被引量:7
  • 2徐新良 张树文 等.长春市城市建设与管理信息系统的设计与开发[J].长春科技大学学报,2000,30:107-111.
  • 3..建设部建城[1993]784,城市绿化规划建设指标的规定[S]..,,....
  • 4唐中实,朱丽云,尹平,等.IKONOS高分辨率卫星影像在土地利用分类中的应用研究[C]//中国地理信息系统协会.中国地理信息系统协会第八届年会论文集.北京:中国地理信息系统协会,2004:226—229.
  • 5BAATZ M, SCHAPE A. Multiresolution segmentation-an optimization approach for high quality multi-scale image segmentation[EB/OL]. [2005-04]. http://www. caf. dlr. de/caf/anwendungen/projekte/projekte_nutzung/landsat/landsat_projekte/Projekt%20Hoffmann/lit/baatz_schaepe.pdf.
  • 6RAFAEL C G,RICHARD E W.阮秋琦,阮宇智译.数字图像处理(第二版)[M].北京:电子工业出版社,2004:460—500.
  • 7MARTIN B, URSULA B. SEYEDD,et al. eCognition User Guide[M]. Gemany: Definients Image Gmb,2004:15-19.
  • 8BLASCHKE T.LANG S.LORUP E. at al. Object-oriented image processing in an integrated GIS/remote sensing environment and perspectives for environmental applications[J]. Environmental Information for Planning. 2000(2):555-570.
  • 9Wilkinson G G.Recent Development in Remote Sensing Technology and the Importance of Computer Vision Analysis Techniques[A].Machine Vision and Advanced Image Processing in Remote Sensing[C].1999.
  • 10Blaschke T,Lang S,Lorup E,et al.Object-oriented Image Processing in an Integrated GIS/Remote Sensing Environment and Perspectives for Environmental Applications[A].Cremers A,Greve K(Hrsg.).Umwelt Information for Planning,Politikund Offent Lichkeit[C].Environmental Information for Panning,Politics and the Public Metropolis Verlag,Marburg,2000,2:555-570.

共引文献272

同被引文献330

引证文献24

二级引证文献210

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部