摘要
利用锥上的不动点指数理论,获得了二阶变系数常微分方程-u''(t)+a(t)u(t)=f(t,u(t)),t∈[0,1]在Neumann边界条件下至少1个正解的存在性定理,及至少n(n为任意自然数)个正解的存在性定理.
Using the fixed-point index theory in cones,some existence theorem of at least one positive solution and existence theorem of at least n(any natural number) positive solutions with Neumann boundary condition of the second-order various coefficient ordinary differential equation-u''(t)+a(t)u(t)=f(t,u(t)),t∈ were obtained in this paper.
出处
《甘肃农业大学学报》
CAS
CSCD
北大核心
2010年第2期152-155,共4页
Journal of Gansu Agricultural University
关键词
NEUMANN边值问题
正解
奇异
不动点指数
Neumann boundary value problem
positive solution
singular
fixed-point index