期刊文献+

二阶变系数常微分方程Neumann边值问题的正解 被引量:1

Positive solution for Neumann boundary value problem of second-order various coefficient ordinary differential equation
下载PDF
导出
摘要 利用锥上的不动点指数理论,获得了二阶变系数常微分方程-u''(t)+a(t)u(t)=f(t,u(t)),t∈[0,1]在Neumann边界条件下至少1个正解的存在性定理,及至少n(n为任意自然数)个正解的存在性定理. Using the fixed-point index theory in cones,some existence theorem of at least one positive solution and existence theorem of at least n(any natural number) positive solutions with Neumann boundary condition of the second-order various coefficient ordinary differential equation-u''(t)+a(t)u(t)=f(t,u(t)),t∈ were obtained in this paper.
作者 梁盛泉 杨和
出处 《甘肃农业大学学报》 CAS CSCD 北大核心 2010年第2期152-155,共4页 Journal of Gansu Agricultural University
关键词 NEUMANN边值问题 正解 奇异 不动点指数 Neumann boundary value problem positive solution singular fixed-point index
  • 相关文献

参考文献8

二级参考文献30

  • 1Leela S., Monotone method for second order periodic boundary value problems, Nonlinear Anal., 1983, 7:349-355.
  • 2Nieto J. J., Nonlinear second-order peroidic boundary value problems, J. Math, Anal. Appl., 1988, 130:22-29.
  • 3Cabada A., Nieto J. J., A generation of the monotone iterative technique for nonlinear second-order periodicboundary value problems, J. Math. Anal. Appl., 1990, 151: 181-189.
  • 4Cabada A., The method of lower and upper solutions for second, third, forth, and higher order boundaryvalue problens, J. Math. Anal. Appl., 1994, 185: 302-320.
  • 5Gossez J. P., Pmari P., Periodic solutions of a second order ordinary differential equation: anecesary andsufficient condition for nonresonance, J. Diff. Equs., 1991, 94: 67-82.
  • 6Omari P., Villari G., Zandin F., Periodic solutions of lienard equation with one-sided growth restrictions, J.Diff. Equs., 1987, 67: 278-293.
  • 7Ge Weigao, On the existence of harmonic solutions of lienard system, Nonlinear Anal., 1991, 16(2): 183-190.
  • 8Mawhin J., Willem M., Multiple solutions of the periodic boundary value problem for some forced pendulumtype equations, J. Diff. Equs., 1984, 52: 264-287.
  • 9Zelati V. C., Periodic solutions of dynamical systems with bounded potential, J. Diff. Equs., 1987, 67:400-413.
  • 10Lassoued L., Periodic solutions of a second order superquadratic system with a change of sign in potential,J. Diff. Equs., 1991, 93: 1-18.

共引文献86

同被引文献4

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部