期刊文献+

乐谱图像中的音符识别方法 被引量:2

Note Recognition Method in Music Score Image
下载PDF
导出
摘要 面向多声部乐谱,实现基于结构模式的音符识别方法。在音符基元抽取阶段,提出基于游程分析的符干、符头、符梁3类基元抽取算法,具有较好的抗相交和抗粘连干扰能力。在音符结构分析阶段,采用"作用场"描述音符基元关系,将音符分为6类子结构,可缩小基元搜索范围。在此基础上细分音符结构,遵循关键子结构优先定位原则实现音符基元重组,可降低分析复杂度且具有良好的基元冗余排错能力。实验结果表明,该方法能快速准确识别多声部乐谱中的音符,在音符排列密集、结构复杂时适应能力较强。 This paper realizes note recognition method based structure mode for multi-voice music score.In the procedure of primitive extraction,three kinds of algorithms based on run-length coding are proposed respectively for extracting stem,note head and beam,they have better ability for resolve troublesome anti-intersection and anti-conglutination.In the procedure of structure analysis,interaction field is introduced to describe the association relationship of primitives,and note is divided to six kinds of substructures to reduce primitive searching range.It subdivides note structure based on aforesaid procedure,note primitive is realized recombination which follows the principle of giving priority to the key substructure,it can reduce analysis complexity and has well ability of primitive redundancy debugging.Experimental results show that this method can recognize note in multi-voice with high accuracy and efficiency,and powerful adaptability,it has good adaptability at the situation of notes intensive arrangement and complicated structure.
作者 刘晓翔
出处 《计算机工程》 CAS CSCD 北大核心 2010年第9期163-167,共5页 Computer Engineering
基金 广东省自然科学博士科研启动基金资助项目(7300090) 暨南大学引进人才科研启动基金资助项目(510061)
关键词 光学乐谱识别 音符识别 基元抽取 结构分析 optical music score recognition note recognition primitive extraction structure analysis
  • 相关文献

参考文献6

  • 1George S E.Visual Perception of Music Notation:On-line and Off-line Recognition[M].[S.l.]:IRM Press,2004.
  • 2Bainbridge D,Bell T C.A Music Notation Construction Engine for Optical Music Recognition[J].Software-Practice & Experience,2003,33(2):173-200.
  • 3Fahmy H.A Graph-rewriting Papadigm for Discrete Relaxation:Application to Sheet-music Recognition[J].International Journal of Pattern Recognition and Artificial Intelligence,1999,12(6):763-799.
  • 4刘晓翔,张树生,王静,汪鹏.乐谱图像倾角快速检测方法[J].计算机工程,2004,30(2):33-35. 被引量:3
  • 5刘晓翔 张树生.乐谱图像中谱线的检测与删除方法研究.中国图象图形学报:A辑,2003,8:657-661.
  • 6Rossant F,Bloch I.Robust and Adaptive OMR System Including Fuzzy Modeling,Fusion of Musical Rules,and Possible Error Detection[J].EURASIP Journal on Applied Signal Processing,2007,(1):815-841.

二级参考文献2

共引文献3

同被引文献6

  • 1陈艳,孙羽菲,张玉志.基于连通域的汉字切分技术研究[J].计算机应用研究,2005,22(6):246-248. 被引量:11
  • 2邵洁,成瑜.关于手写汉字切分方法的思考[J].计算机技术与发展,2006,16(6):184-186. 被引量:6
  • 3Lu Yi.Machine Printed Character Segmentation:An Overview[J].Pattern Recognition,1995,28(1):67-80.
  • 4Lin Yu-Tseng.Segmenting Handwritten Chinese Characters Based on Heuristic Merging of Stroke Bounding Boxes and Dynamic Programming[J].Pattern Recognition,1998,19(10):963-973.
  • 5Tseng Yi-Hong,Lee His-Jian.Recognition-based Handwritten Chinese Character Segmentation Using a Probabilistic Viterbi Algorithm[J].Pattern Recognition,1999,20(8):791-806.
  • 6Liang Zhizhen.A Metasynthetic Approach for Segmenting Handwritten Chinese Character Strings[J].Pattern Recognition,2005,26(10):1-14.

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部