期刊文献+

基于主成分分析的GA-BPNN遥感图像分类研究 被引量:5

Research of BP Neural Network Classification with Optimization of Genetic Algorithm for Remote Sensing Imagery Based on Principal Component Analysis
下载PDF
导出
摘要 在高原山地地区,传统遥感分类方法分类精度低,而标准BP神经网络分类方法在实际应用中也难以胜任。探讨对数据源主成分分析特征选择的基础上,用量化共轭梯度法改进标准BP算法,采用GA优化BP网络的隐层神经元数目、初始权重。并以香格里拉县ETM+遥感图像为例,在DEM地形数据辅助下,训练网络使其收敛,仿真输出。结果表明,其分类总精度为84.52%,Kappa系数为0.8317,比最大似然法分类精度提高了9.08个百分点,验证了GA优化的BP网络遥感图像分类的可行性和有效性。 The accuracy of classification was very low for remote sensing imagery of mountain areas in the highlands with traditional method,and it wasn't satisfactory with the method of standard Back-Propagation neural networks in practical applications too.The new method was presented,with neural networks and genetic algorithm toolbox of the Matlab for the platform,using conjugate gradient method to improve the standard BP algorithm,using GA to optimize the BP network to identify the number of hidden layer neurons and the initial weights.For example,the ETM + remote sensing image of Shangri-La County was classified in this method.The results showed that the Kappa coefficient was 0.8317,the overall classification accuracy was 84.52%,and it was improved 9.08 percentage points,compare with the maximum likelihood classification method.And it showed that it was feasible and effective to classify the remote sensing imagery by the BP network based on the optimization of genetic algorithm.
出处 《宜春学院学报》 2010年第4期1-4,共4页 Journal of Yichun University
基金 国家自然科学基金项目"三江并流区森林生态系统碳储量遥感定量研究"(40861009)资助
关键词 GA BP人工神经网络 主成分分析 遥感图像分类 Genetic Algorithm BP Neural Networks Principal Component Analysis Remote Sensing Image Classification
  • 相关文献

参考文献7

二级参考文献29

  • 1潘贤章,曾志远.长江三峡地区资源遥感图像处理中的几个技术难题[J].环境遥感,1994,9(3):209-214. 被引量:14
  • 2林桦,王正光.ART网在地图彩色分类中的应用[J].西安电子科技大学学报,1994,21(4):419-425. 被引量:3
  • 3刘正军,王长耀,延昊,牛铮,王雷.基于Fuzzy ARTMAP神经网络的高分辨率图象土地覆盖分类及其评价[J].中国图象图形学报(A辑),2003,8(2):151-154. 被引量:16
  • 4韩小云,刘瑞岩.ART-2网络学习算法的改进[J].数据采集与处理,1996,11(4):241-245. 被引量:22
  • 5杨建刚.人工神经网络实用教程[M].杭州:浙江大学出版社,2002..
  • 6Stanic S,Goodman R R,Briggs K B,et al.ShallowWater Bottom Reverberation Measurements[J].IEEE Journal of Oceanic Engineering,1998,23 (3):203-210.
  • 7Michalopoulou Z,Alexandrou D,Moustier C.Application of Neural and Statistical Classifiers to the Problem of Seafloor Characterization[J].IEEE Journal of Oceanic Engineering,1995,20(3):190-197.
  • 8Stewart W K,Chu D,Malik S,et al.Quantitative Seafloor Characterization Using a Bathymetric Sidescan sonar[J].IEEE Journal of Oceanic Engineering,1994,19(4):599-610.
  • 9Alexandrou D,Pantzartzis D.A Methodology for Acoustic Seafloor Classification[J].IEEE Journal of Oceanic Engineering,1993,18(2):81-86.
  • 10Huseby R B,Milvang O,Solberg A S,et al.Seabed Classification from Multibeam Echosounder Data Using Statistical Methods[A].In:Oceans ' 93,IEEE Conference Proceedings[C],1993:229-233.

共引文献128

同被引文献29

引证文献5

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部