期刊文献+

基于特征提取的缺陷图像分类方法 被引量:5

Classification Method for Defect Image Based on Feature Extraction
下载PDF
导出
摘要 针对缺陷图像表面复杂多变、特征不宜提取的特点,提出了一种归一化转动惯量特征和不变矩特征相结合的时域分析方法来构建缺陷图像的统计特征量,同时增加缺陷矩形框区域内压缩度、距离极值比和线度特征量作为缺陷分类的依据;提出了在缺陷频谱图像内提取特征量的频域分析方法,并将矩形框区域内所有像素点灰度平均值和灰度方差值作为缺陷分类的另一重要依据;同时将BP神经网络应用于缺陷图像的自动分类中,构建了系统的缺陷分类器,并对现场采集的常见6种缺陷类型进行了实验.结果表明,该特征提取方法在很大程度上提高了特征的分类有效性;该BP分类器识别率较高,现场整体识别率达到90%以上,在一定程度上解决了缺陷图像分类难的问题. Being aimed at the characteristic in complexity and levity of defect image surface,a novel method combined NMI feature with invariant feature in time domain to conceive the statistic feature of defect images is put forward.Simultaneously,compactness feature,L-S factor feature and linearity feature in the rectangular region are developed as one basis of defect classification.Moreover,in frequency domain,a method which can extract features in the rectangular region of central bright area of defect spectrum image is proposed,and maximum difference and average difference of gray value of all the pixels in this rectangular region are developed as another important basis of defect classification.This paper also applies BP neural network to the automatic classification of defect images,constructs the defect classifier and tests six types of common defects collected from online data.The experimental result shows that the new features extraction method increases the validity of classification of feature greatly and this BP classifier has high identification accuracy and the overall recognition rate is over 90%.This new technique resolves the difficulty of defect classification on defect images to some extent.
出处 《北京工业大学学报》 EI CAS CSCD 北大核心 2010年第4期450-457,共8页 Journal of Beijing University of Technology
基金 国家自然科学基金资助项目(60372047)
关键词 缺陷图像 特征提取 缺陷分类 BP神经网络 defect image feature extraction defect classification BP neural network
  • 相关文献

参考文献4

二级参考文献22

  • 1王素菊.神经网络在涡流无损检测中的应用[J].南京航空航天大学学报,1995,27(5):696-700. 被引量:4
  • 2王亚东,彭嘉雄,魏智.基于不变特征的区域相关技术[J].华中理工大学学报,1996,24(2):4-6. 被引量:4
  • 3葛艳,王薇,闫传军,吴鹏,任志考.基于模糊神经网络的CDMA网络故障诊断方法[J].北京邮电大学学报,2007,30(1):123-126. 被引量:3
  • 4赵荣椿.数字图像处理导论[M].西安:西北工业大学出版社,1995..
  • 5吕铁英.图像的特征与匹配识别研究[博士学位论文].武汉:华中理工大学,1999..
  • 6东南大学等7所工科院校.物理学[M].北京:高等教育出版社,1997,3..
  • 7Stoianov I, Nachman L, Madden S, et al. PIPENET. a wireless sensor network for pipeline monitoring [ C ] // 2007 International Symposium on Information Processing in Sensor Networks. Massachusetts. ACM Press, 2007: 264-273.
  • 8Feng D C, Dias P J M. Study on information fusion based on wavelet neural network and evidence theory in fault diagnosis [ C ] //2007 International Conference on Electronic Measurement and Instruments. Xi' an: IEEE Press, 2007: 3522-3526.
  • 9Luis E O, Beatriz M T. A method to estimate emission rates from industrial stacks based on neural networks[J]. Chemosphere, 2004, 57(7): 691-696.
  • 10Denoeux T, Masson M. EVCLUS: evidential clustering of proximity data[J]. IEEE Systems, Man and Cybernetics B, 2004, 34(1). 95-109.

共引文献68

同被引文献31

引证文献5

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部