期刊文献+

基于粗糙集的CBR系统案例检索策略 被引量:9

A Case Retrieval Strategy for CBR System Based on Rough Set
下载PDF
导出
摘要 针对案例推理系统中案例检索的效率和质量问题,提出一种新的案例检索策略。采用粗糙集进行案例属性约简,完成案例库优化,并计算反映专家经验的属性权重,结合相似度计算和人工神经网络进行不同情况下的案例检索。运用UCI数据集进行了仿真对比,将其用于数字数据网故障诊断系统中,结果表明所提出的策略在不同数据集下均具有较高的检索效率,更加适用于实际CBR系统。 A new case retrieval strategy is proposed for case-based reasoning(CBR) system because of the case retrieval efficiency and quality problem. The rough set theory is adopted to implement case attribute reduction, complete the case base optimization, and compute attribute weights that reflect the expert's experience firstly, and then is combined with similarity computation and artificial neural network (ANN) to accomplish case retrieval in different situation. The UCI data set is used to simulate and compare. Application of the retrieval strategy in the data digital network fault diagnosis system indicates that the proposed case retrieval strategy has better performance in different data sets, and it is more fit for practical CBR system.
出处 《电讯技术》 北大核心 2010年第5期23-27,共5页 Telecommunication Engineering
关键词 基于案例推理 概率神经网络 粗糙集 案例检索 故障诊断系统 case-based reasoning(CBR) probabilistic neural network rough set case retrieve fault diagnosis system
  • 相关文献

参考文献6

  • 1王波,宋东,姜华男.基于粗集的CBR故障诊断案例的检索方法研究[J].计算机测量与控制,2007,15(11):1430-1433. 被引量:2
  • 2LI Yah, Simon C K Shin, Sankar K Pal. Combining Feature Reduction and Case Selection in Building CBR Classifiers [J]. IEEE Transactions on Knowledge and data Engineering, 2006, 18(3) :415 - 429.
  • 3蒋占四,陈立平,罗年猛.最近邻实例检索相似度分析[J].计算机集成制造系统,2007,13(6):1165-1168. 被引量:65
  • 4Piliouras N, Kalatzis I, Theocharakis P. Development of the probabilistic neural network-cubic least squares mapping classifier to assess carotid plaques risk [ J ]. Pattern Recognition Letters, 2004,25 (2) : 249 - 258.
  • 5WU Jian-da, CHIANG Peng-hsin, CHANG Yo-wei. An expert system for fault diagnosis in internal combustion engines using probability neural network [ J ]. Expert Systems with Applications, 2008,34 (4) : 2704 - 2713.
  • 6刘江永,王大明.基于支持向量机的快速高光谱分类研究[J].陕西师范大学学报(自然科学版),2009,37(4):43-47. 被引量:2

二级参考文献23

  • 1陈建江,肖人彬,钟毅芳.战术导弹方案设计智能优化系统的研究[J].计算机集成制造系统,2004,10(8):871-876. 被引量:3
  • 2韩兆福,葛银茂,程江涛,王虹昙,刘兰允.故障树分析法在某型飞机火控系统故障诊断中的应用[J].中国测试技术,2006,32(3):39-41. 被引量:15
  • 3Hughes G F. On the mean accuracy of statistical pattern recognizers [ J ]. IEEE Transactions on Information Theory, 1968, 14: 55-63.
  • 4Melgani F, Bruzzone L. Classification of hyperspectral remote sensing images with support vector machines [J].IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(8): 1 778-1 790.
  • 5Camps V S G, Gomez C L, Calpe J, et al. Robust support vector method for hyperspectral data classification and knowledge discovery [ J ]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42 (7): 1 530-1 542.
  • 6Pal M, Mather P M. Support vector machines for classification in remote sensing [ J ]. International Journal of Remote Sensing, 2005, 26 (5) : 1 007-1 011.
  • 7FEI B, LIU J. Binary tree of SVM: A new fast multiclass training and classification algorithm[J]. IEEE Transactions on Neural Networks, 2006, 17(3): 696- 704.
  • 8Nguyen D D, Ho T B. A bottom-up method for simplifying support vector solutions [ J ]. IEEE Transactions on Neural Networks, 2006, 17 (3) : 792- 796.
  • 9Serpico S B, Bruzzone L. A new search algorithm for feature selection in hyperspectral remote sensing images [J ]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(7): 1 360-1 367.
  • 10Garcia P N, Ortiz B D. Improving multiclass pattern recognition by the combination of two strategies [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006,28(6), 1 001-1 006.

共引文献66

同被引文献126

引证文献9

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部