期刊文献+

基于独立分量分析的二级指纹分类算法 被引量:3

Secondary Fingerprint Classification Algorithm Based on Independent Component Analysis
下载PDF
导出
摘要 针对传统指纹分类算法分类不均衡的缺陷,提出一种基于独立分量分析的二级指纹分类算法。从高阶统计相关性角度出发提取一组特征指纹图像,以该组图像为基,利用该组图像构成的特征空间将指纹图像线性表出,结合系数向量和Henry分类模式将指纹库细分为11个子类,建立二级索引。应用结果表明,该算法可节省运算时间,降低复杂度。 Aiming at the shortage of classification unbalanced in traditional fingerprint classification algorithm,this paper presents a secondary fingerprint classification algorithm based on independent component analysis.It extracts a group of characteristic fingerprint image in terms of high level statistics relevance,uses this group of characteristic as base images,the fingerprint can be projected into the feature space.Combining coefficient vector with Henry classification mode to set up two level index which classifies input fingerprints into eleven kinds of category.Application results show that this algorithm can save operation time and reduce complexity.
出处 《计算机工程》 CAS CSCD 北大核心 2010年第10期16-18,共3页 Computer Engineering
基金 国家自然科学基金资助项目(60375010)
关键词 指纹分类 中心点 三角点 独立分量分析 fingerprint classification core point delta point Independent Component Analysis(ICA)
  • 相关文献

参考文献5

二级参考文献18

  • 1陈宏,田捷.检验配准模式的指纹匹配算法[J].软件学报,2005,16(6):1046-1053. 被引量:11
  • 2吴小培 冯焕清 等.独立分量分析在脑电信号预处理中的应用[J].北京生物医学工程,2000,19(3):201-205.
  • 3[1]Ellison C, Schneier B. Ten Risk of PKI: What You're not Being Told About Public Key Infrastructure[J]. Computer Security Journal, 2000, 16(1):i-7.
  • 4[2]Young A, Yung M. The Dark Side of Blackbox Cryptography or Should We Trust Capstone? [ A]. Advances in Cryptology--Cryp-to'96 Proc[C]. Springer-Verlag, 1996.
  • 5[3]Fox B, LaMacchia B. Certificate Revocation: Mechanics and Meaning[A]. Proc Financial Cryptography' 98[C]. 1998. 158-164.
  • 6[4]McDaniel P, Rubin A. A Response to "Can We Eliminate Certificate Revocation Lists.? "[ A ]. Proc Financial Cryptography 2000[C]. 2000.245 - 258.
  • 7[5]Reiter M K, Stubblebine S G. Authentication Metric Analysis and Design[J]. ACM Trans on Information and System Security, 1999,2(2):138- 158.
  • 8[6]Lampson B, Abadum M, Burrows M, et al. Authentication in Distributed Systems: Theory and Practice[J]. ACM Trans on Computer Systems, 1992,10(4): 265 - 310.
  • 9[7]Millen K, Wright. Reasoning About Trust and Insurance in a Public Key Infrastructure [A]. IEEE Computer Security Foundations Workshop(CSFW-13) [ C]. 2000.
  • 10余松煜 周源华 等.数字图象处理[M].北京:电子工业出版社,1987.31.

共引文献60

同被引文献30

  • 1尹义龙,张宏伟,刘宁.基于Delaunay三角化的指纹匹配方法[J].计算机研究与发展,2005,42(9):1622-1627. 被引量:14
  • 2Jain A K, Hong Lin, Pankanti S, et al. An Identity Fingerprint Recognition[Z]. California Institute of Technology, 1997.
  • 3Hrechak A K, Mchugh J A. Automated Fingerprint Recognition Using Structural Matching[J]. Pattren Recognition, 1990, 23(8): 893-904.
  • 4Jain A K,Ross A,Prabhakar S. An Introduction to Biometti. Recognition[J]. IEEE Trans on CSVT,2004,14( 1 ) :4-5.
  • 5Jain A K,Prabhakar S, Hong L. A multi-channel approach fingerprint classification [ J ]. IEEE Trans on PAMI, 1999 i (4) :348-359.
  • 6Hong Jin-hyuk, Min Jun-ki, Cho Ung-keun. Fingerprint ch sification using one-vs-all support vector machines dy. cally ordered with naive Bayes classifiers [ J ]. Pattern Reck, nition ,2008,41 (2) :662-671.
  • 7Gonzalez R C, Woods R E. Digital image processing i[ M ]. ed. Beijing: Publishing House of Electronics ndustry 2002 519-560.
  • 8Yao Yuan, Marcialis G L, Pontil M. Combining flat and tured representations for fingerprint classification with sire neural networks and support vector machines[ J ]. Recognition. 2003,36 ( 2 ) : 397-406.
  • 9Li Jun, Yau Weiyan, W Han. Combining singu points and orientation im information for fingeqll classification [ J ]. Part, Recognition, 2008,41 ( l ):353-366.
  • 10Neto H V, Borges D L. Fingerprint ClassificatiOn with Ne / Networks[ C ]//Proceedings of the 4th Brazilian Sympos] on Neural Networks. [ s. l. ] : [ s. n. ], 1997:66-72. /.

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部