期刊文献+

基于小波分解的群落流量异常检测 被引量:5

Community traffic anomaly detection using wavelet analysis
下载PDF
导出
摘要 针对大规模高速网络海量数据处理和异常检测率较低的问题,将群落概念引入流量异常检测领域,用小波三层分解和偏离值结合的检测方法,实验性地证明了基于群落的检测比基于网络的检测能提供更加准确和高效的检测结果。因为以群落为观察范围,可以避免对群落的攻击被其他群落的无关网络活动所掩盖,并且可以分流数据。文中对群落检测所使用的特征集进行了研究,在总结已有基于Netflow记录的特征的基础上,用基于相关性的方法剔出了强相关的特征,优选出适合群落检测的特征集,避免了当前基于Netflow的异常检测中随意选取特征所造成的信息冗余。 The large scale and high speed networks can create massive data and have low detection rate.In order to address these issues,the idea of "community" into network anomaly detection area is borrowed,and applied three-layer wavelet decomposition as well as deviation score detection method are applied.The results of experiment demonstrated that,the community-based detection can achieve higher detection rate and better efficiency than the net-work-based detection.This is because,with the community-based detection,the community attacks covered by activi-ties of another unrelated communities could be eliminated,and the network data could be separated when community is used as monitor scope.The features of community detection is also studied in the paper.Then,based on the summary of the features of Netflow records,using the correlation based method to remove strong correlative features,and select proper features of community detection.Therefore,the information redundancy existied in current Netflow based anomaly detection can be eliminated.
出处 《电子测量与仪器学报》 CSCD 2010年第4期365-370,共6页 Journal of Electronic Measurement and Instrumentation
基金 国家自然科学基金(编号:60903157)资助项目 国家信息安全计划(编号:2006C27)资助项目
关键词 群落 异常检测 小波分解 特征选择 community anomaly detection wavelet analysis feature selection
  • 相关文献

参考文献15

  • 1BARFORD P,KLINE J,PLONKA D,et al.A signal analysis of network traffic anomalies[C].Proceedings of the 2nd ACM SIGCOMM Workshop on Internet measurment,Marseille,France,2002,71-82.
  • 2LAKHINA A,CROVELLA M,DIOT C.Mining anomalies using traffic feature distributions[J].SIGCOMM Comput Commun Rev,2005,35(4):217-228.
  • 3NYCHIS G,SEKAR V,ANDERSEN D G,et al.An empirical evaluation of entropy-based traffic anomaly detection[C].Proceedings of the 8th ACM SIGCOMM conference on Internet measurement,Vouliagmeni,Greece,2008,151-156.
  • 4XIN L,FANG N,CROVELLA M,et al.Detection and identification of network anomalies using sketch subspaces[C].Proceedings of the 6th ACM SIGCOMM conference on Internet measurement.Rio de Janeriro,2006:147-152.
  • 5LIN L Z,MIN H G,MIAO Y X,et al.Detecting distributed network traffic anomaly with network-wide correlation analysis[J].EURASIP Journal on Advances in Signal Processing,2009,2009:11 pages.
  • 6NEWMAN M E.The structure and function of complex networks[J].Siam Review,2003,45(2):167-256.
  • 7马卫东,李幼平,马建国,周明天.面向Web网页的区域用户行为实证研究[J].计算机学报,2008,31(6):960-967. 被引量:14
  • 8王科,胡海波,汪小帆.中国高校电子邮件网络实证研究[J].复杂系统与复杂性科学,2008,5(4):66-74. 被引量:6
  • 9胡健,董跃华,杨炳儒.大型复杂网络中的社区结构发现算法[J].计算机工程,2008,34(19):92-93. 被引量:14
  • 10徐玲,胡海波,汪小帆.一个中国科学家合作网的实证分析[J].复杂系统与复杂性科学,2009,6(1):20-28. 被引量:19

二级参考文献190

共引文献410

同被引文献64

  • 1TROPP J A,LASKA J N,DUARTE M F,et al.Beyond nyquist:efficient sampling of sparse bandlimited signals[J].IEEE Trans.Inform.Theory,2010,56 (1):520-544.
  • 2CAND(E)S E,WAKIN M.An introduction to compressive sampling[a sensing/sampling paradigm that goes against the common knowledge in data acquisition] [J].IEEE Sig.proc.Mag.,Mar,2006,52(2):21-30.
  • 3TROPP J A.Algorithms for simultaneous sparse approximation.Part Ⅱ:Convex relaxation[J].Signal Process.(Special Issue on Sparse Approximations in Signal and Image Processing),2006,86:589-602.
  • 4MALLAT S G,ZHANG Z.Matching pursuits with timefrequency dictionaries[J].IEEE Trans.Signal Process.,1993,41 (12):3397-3415.
  • 5TROPP J A.Algorithms for simultaneous sparse approximation.Part Ⅰ:Greedy pursuit[J].Signal Process.(Special Issue on Sparse Approximations in Signal and Image Processing),2006,86:572-588.
  • 6GILBERT A C,STRAUSS M J,TROPP J A.Improve time bounds for near-optimal sparse Fourier representation via sampling[C].Proc.Wavelets Ⅺ at SPIE Optics and Photonic,San Diego,CA,2005.
  • 7WITTE R A.Sample rate and display rate in digitizing oscilloscopes[J].Hewlett-Packward Journal,1992,43(1):18-19.
  • 8GUO SH Z,SUN SH H,ZHANG ZH T.A novel equivalent sampling method using in the digital storage oscilloscopes[C].IEEE Instrumentation and Measurement Technology Conf.,1994:530-532.
  • 9ZHAO Y J,ZHUANG X Y,WANG L.The research and application of random sampling in digital storage oscilloscope[C].ICDT IEEE Circuit and Systems International Conference on,2009.
  • 10DONOHO D.Compressed sensing[J].IEEE Trans.Inform.Theory,2006,52:1289-1306.

引证文献5

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部