期刊文献+

神经网络方法对海浪有效波高数值模拟的改进 被引量:9

Neural network method to numerical simulation of significant wave height improvements
下载PDF
导出
摘要 结合东北太平洋浮标资料,使用神经网络模型对WAVEWATCHⅢ海浪模式模拟的有效波高进行训练模拟,并与增加风场作为输入项的神经网络模型作了对比分析。通过分析浮标观测资料、WAVEWATCHⅢ数值模式和神经网络模拟的海浪有效波高大小,可以看出使用神经网络结合数值模式能够较好地提高有效波高的模拟精度。 Based on the NDBC buoy data in the North Pacific, artificial neural network models, with and without the wind fields as the inputs, were introduced to simulate the significant wave height (SWH) of the output of the third-generation ocean wave model. To improve the simulation precision of the SWH at a high value, a new type of neural network model was developed, which was trained at different part of swatch and was simulated synthetically. Compared with the buoy SWH, the root mean square errors (RMSE) of the ocean wave model, the neural network models without and with the QSCAT/NCEP wind fields as the inputs, and the new type of neural network model are 0.37m, 0.30m, 0.28m and 0.27m, respectively. Using the neural network models, the WAVEWATCH Ⅲ ocean wave model could simulate the SWH more accurately.
机构地区 中国人民解放军
出处 《海洋预报》 2010年第2期8-14,共7页 Marine Forecasts
关键词 海浪模拟 有效波高 神经网络 WAVEWATCHⅢ模式 ocean wave simulation, significant wave height, neural network, WAVEWATCH Ⅲ model
  • 相关文献

参考文献20

  • 1Makarynskyy O.Improving predictions with artificial neural networks[J].Ocean Engineering,2004,31:709-724.
  • 2Meng L,He Y J,Chen J N,et al.Neural Network Retrieval of Ocean Surface Parameters from SSM/I Data[J].Monthly Weather Review,2007,135(2):586-597.
  • 3Kanan H R,Faez K.Wave height forecasting using cascade correlation neural network[C].In:WSCG POSTERS proceedings,Plzen,Czech Republic.2004.
  • 4Deo M C,Naidu C S.Real time wave forecasting using neural networks[J].Ocean Engineering,1999,26:191-203.
  • 5Deo M C,Jha A,Chaphekar A S,et al.Neural network for wave forecasting[J].Ocean Engineering,2001,28:889-898.
  • 6Rao S,Mandal S.Hindcasting of storm waves using neural networks[J].Ocean Engineering,2005,32:667-684.
  • 7Londhc S N,Panchang V One-day wave forecasts based on artificial neural networks[J].Journal of Atmospheric and Oceanic,2006,23:1593-1603.
  • 8Makarynskyy O,Pires-Silva A A,Makarynska D,et al.Artificial neural networks in wave predictions at the west coast of Portugal[J].Computers & Geosciences,2005,31:415-424.
  • 9孟雷,闻斌,于福江等.基于神经网络方法的海浪数值模拟[C].第二十届全国水动力学会研讨会文集.北京:海洋出版社,2007,702-707.
  • 10齐义泉,张志旭,李志伟,李毓湘,施平.人工神经网络在海浪数值预报中的应用[J].水科学进展,2005,16(1):32-35. 被引量:22

二级参考文献28

  • 1文圣常 宇宙文.海浪理论和计算原理[M].北京:科学出版社,1984.220-228.
  • 2Kuligowski R J, Baxros A P. Experiments in short term precipitation forecasting using artificial neural networks[J]. Mon Weath Rev, 1998,126:470 - 482.
  • 3Imrie C E, Durucan S, Korre A. River flow prediction using artificial neural networks:generation beyond the calibration range[J]. J Hydrol,2000, 233 : 138 - 153.
  • 4Tsai C P, Lin C, Shen J N. Neural networks for wave forecasting among multi-stations[J]. Ocean engineering, 2002, 29:1683 - 1695.
  • 5Deo M C, Kiran Kumar N. Interpolation of wave heights[J]. Ocean engineering, 2000, 27: 907- 919.
  • 6Li C W. A split operator scheme for ocean wave simulation[J]. International Journal for Numerical Methods in Fluids, 1992, 15: 579- 593.
  • 7Wentz F J.User's manual of SSM/I antenna temperature tapes,RSS technical report 120191.1101 College Ave.,suite 220,SANTA ROSE,CA 95404:Remote Sensing Systems,1991.3-4
  • 8Goodberlet M A,Swift M A,Wilkson J C.Remote sensing of ocean surface winds with the special sensor microwave/imager.Journal of Geophysics Research,1989,94:14547-14555
  • 9Goodberlet M A,Swift M A.Improved retrievals from the DMSP wind speed algorithm under adverse weather conditions.IEEE Transactions on Geoscience and Remote Sensing,1992,30:1076-7077
  • 10Petty G W.A comparison of SSM/I algorithms for the estimation of surface wind.In:Proceedings shared processing network,DMSP SSM/I algorithm symposium.Monterrey,CA,1993.8-10

共引文献29

同被引文献64

引证文献9

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部