期刊文献+

基于改进粒子群算法的飞行控制器参数寻优 被引量:11

Optimization of Flight Controller Parameters Based on Chaotic PSO Algorithm of Adaptive Parameter Strategy
原文传递
导出
摘要 提出了一种自适应参数策略的混沌粒子群优化算法。该方法将自适应加速度系数调整策略引入到PSO中,以有效地控制全局和局部搜索,并利用混沌运动的遍历性在解空间产生较大规模的初始群体,从中择优选出分布均匀的初始种群以提高粒子的质量,同时根据种群适应度方差对陷入早熟收敛的粒子进行混沌扰动,提高算法收敛的精度。将该方法用于飞行控制器的参数优化设计中。仿真结果表明:使用该方法能够有效地解决飞行控制系统的参数优化设计,极大地提高了飞行控制器参数的设计效率。 A chaotic PSO algorithm of adaptive parameter strategy was proposed.In this method,an adaptive strategy of acceleration coefficients was incorporated into PSO algorithm to keep balance between global search and local search,meanwhile large scale initial population from which well-distributed initial population was chosen to improve quality of particles was generated in the solution space with ergodicity of chaos and chaotic perturbation based on fitness variance of population was utilized to avoid the particles being trapped into local convergence to improve precision in the search.The flight controller parameters were optimized using this method.The simulation results show that the optimal design of flight control system parameters can solve efficiently and the design efficiency is greatly increased with this method.
出处 《系统仿真学报》 CAS CSCD 北大核心 2010年第5期1222-1225,共4页 Journal of System Simulation
关键词 混沌粒子群算法 自适应 飞行控制 参数寻优 chaotic particle swarm optimization adaptive flight control optimization
  • 相关文献

参考文献5

  • 1Kennedy J, Eberhart R. Particle swarm optimization [C]//Proc IEEE Int Confon Neural Nowolks, Perth, USA. USA: IEEE, 1995: 1942-1948.
  • 2Asanga Ratnaweera, Saman K Halgamuge. Self-Organizing Hierarchical Particle Swarm Optimizer with Time-Varing Acceleration Coefficients [J]. IEEE Transactions on Evolutionary Computation (S1089-778X), 2004, 8(3): 240-255.
  • 3S S Liu, Z J Hou. Weighted gradient direction based chaos optimization algorithm for nonlinear programming problem [C]// Proceedings of the 4th World Congress on Intelligent Control and Automation. Shanghai, China: 0-7803-7268-9, 2002:1779-1783.
  • 4吕振肃,侯志荣.自适应变异的粒子群优化算法[J].电子学报,2004,32(3):416-420. 被引量:452
  • 5王介生,王金城,王伟.基于粒子群算法的PID控制器参数自整定[J].控制与决策,2005,20(1):73-76. 被引量:83

二级参考文献10

  • 1王小平 曹立明.遗传算法-理论、算法与软件实现[M].陕西西安:西安交通大学出版社,2002.105-107.
  • 2Astrom K J,Hagglund T. The future of PID control[J]. Control Engineering Practice, 2001,9 (11) : 1163-1175.
  • 3Wang P, Kwok D P. Auto-tuning of classical PID controllers using an advanced genetic algorithm [A].Proc IEEE Int Conf on Power Electronics and Motion Control[C]. San Diego, 1992.1224-1229.
  • 4Kennedy J, Eberhart R. Particle swarm optimization[A]. Proc IEEE Int Conf on Neural Networks[C].Perth, 1995:1942-1948.
  • 5Eberhart R,Kennedy J. A new optimizer using particle swarm theory[A]. Proc 6th Int Symposium on Micro Machine and Human Science[C]. Nagoya, 1995.. 39-43.
  • 6Shi Yuhui, Eberhart R. Modified particle swarm optimizer[A]. Proc 1EEE Int Conf on Evolutionary Computation[C]. Anchorage, 1998:69-73.
  • 7Ziegler J G, Nichols N B. Optimum settings for automatic controllers[J]. Trans ASME, 1942,64(11):433-444.
  • 8王伟,张晶涛,柴天佑.PID参数先进整定方法综述[J].自动化学报,2000,26(3):347-355. 被引量:523
  • 9王凌,李文峰,郑大钟.非最小相位系统控制器的优化设计[J].自动化学报,2003,29(1):135-141. 被引量:19
  • 10谢晓锋,张文俊,杨之廉.微粒群算法综述[J].控制与决策,2003,18(2):129-134. 被引量:422

共引文献532

同被引文献128

引证文献11

二级引证文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部