期刊文献+

基于时间序列分形特征的织物瑕疵检测 被引量:12

Fabric defect detection based on fractal feature of time series
下载PDF
导出
摘要 为充分利用织物纹理特点,并大幅度减少计算量,将织物纹理图像的灰度值分别沿纵、横方向投影得到一维时间序列,提取分形特征。根据Fisher判别准则优选了2个具有一定互补性而又能最大限度区分正常与瑕疵样本的时间序列盒维数组成特征向量,对7种具有不同纹理背景的织物进行瑕疵检测。试验结果表明,在一定的阈值范围内,误检率和漏检率均可控制在10%以内,表明采用这种方法在大幅减少维数估算计算量的同时能够有效区分正常与瑕疵纹理。 In order to reduce the amount of computation,fractal features were extracted after the gray value of fabric texture image was projected on one-dimensional time series along vertical and lateral direction.Fisher's criterion was used to evaluate the discrimination between the defect samples and the normal samples.Two features of certain complementarity and great discrimination were chosen to detect defects on seven fabrics of different texture background.The experimental result showed that the false alarm rate and missing rate could be controlled below 10% within a certain range of threshold values,which indicated the proposed method was efficient in reducing the amount of fractal dimension computation greatly as well as differentiating normal and defect texture.
出处 《纺织学报》 EI CAS CSCD 北大核心 2010年第5期44-47,54,共5页 Journal of Textile Research
基金 纺织面料技术教育部重点实验室培育项目(PY0801)
关键词 时间序列 分形维数 织物瑕疵检测 计盒法 time series fractal dimension fabric defect detection box-counting method
  • 相关文献

参考文献11

  • 1MANDELBROT B B.The Fractal Geometry of Nature[M].San Francisco:W H Freeman,1982.
  • 2KUMAR A.Computer-vision-based fabric defect detection:a survey[J].IEEE Transactions on Industrial Electronics,2008,55(1):348-363.
  • 3谢文录,谢维信.时间序列中的分形分析和参数提取[J].信号处理,1997,13(2):97-104. 被引量:27
  • 4董远,胡光锐.图像分形维数计算技术[J].计算机应用与软件,2001,18(6):61-64. 被引量:19
  • 5SARKAR N,CHAUDHURI B B.An efficient differencial box-counting approach to compute fractal dimension of image[J].IEEE Transactions on Systems,Man and Cybernetics,1994,24(1):115-120.
  • 6CONCI A,PROENACA C B.A fractal image analysis system for fabric inspection based on a box-counting method[J].Computer Networks and ISDN Systems,1998,30(20/21):1887-1895.
  • 7KENNETH F.分形几何:数学基础及其应用[M].曾文曲,译.沈阳:东北大学出版社,1991.
  • 8FOROUTAN-POUR K,DUTILLEUL P,SMITH D L.Advances in the implementation of the box-counting method of fractal dimension estimation[J].Applied Mathematics and Computation,1999,105:195-210.
  • 9步红刚,黄秀宝,汪军.基于多分形特征参数的织物瑕疵检测[J].计算机工程与应用,2007,43(36):233-237. 被引量:13
  • 10CONCI A,PROENCA C B.A fractal image analysis system for fabric inspection based on a box-counting method[J].Computer Networks and ISDN Systems,1998,30:1887-1895.

二级参考文献20

  • 1薛东辉,朱耀庭,朱光喜,万发贯,熊艳.基于DFBIR场的图像边缘提取的一种新方法[J].信号处理,1996,12(1):18-22. 被引量:8
  • 2Pentland A P.Fractal-based description of natural scenes[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 1984,6: 661-674.
  • 3Lundahl T,Ohley W J,Kay S M,et al.Fractal Brownian motion:a maximum likelihood estimator and its application to image texture[J].IEEE Transactions on Medical Imaging, 1986,5:152-161.
  • 4Chen C C,Daponee J S,Fox M D.Fractal feature analysis and classification in medical imaging[J].IEEE Transactions on Medical Imaging, 1989,8:133-142.
  • 5Richardson W B.Applying wavelets to mammograms[J].IEEE Engineering in Medicine and Biology, 1995,14:551-560.
  • 6Conci A,Proenca C B.A fractal image analysis system for fabric inspection based on a box-cotmting method[J].Computer Networks and ISDN Systems, 1998,30(20/21 ) : 1887-1895.
  • 7Wen C Y,Chou S,Liaw J J.Textural defect segmentation using a fourier-domain maximum likelihood estimation method[J].Textile Res J, 2002,72(3 ) :253-258.
  • 8Parrinello T,Vaughan R A.Muhifractal analysis and feature extraction in satellite imagery[J].International Journal of Remote Sensing, 2002,23(9): 1799-1825.
  • 9Anh V V,Maeda J,Tieng Q M,et al.Multifractal texture analysis and classification[C]//IEEE International Conference on Image Processing, 1999,4: 445-449.
  • 10Lassouaoui N,Belouchrani A,Hamami M L.On the use of multifractal analysis and genetic algorithms for the segmentation of cervical cell images[J].International Journal of Pattern Recognition and Artificial Intelligence,2003,17(7): 1227-1244.

共引文献58

同被引文献101

引证文献12

二级引证文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部