期刊文献+

Boussinesq方程组在Besov空间中局部解的存在性和延拓准则 被引量:3

Local Existence and Continuity Conditions of Solutions to the Boussinesq Equations in Besov Spaces
原文传递
导出
摘要 本文研究二维无粘性Boussinesq方程组在超临界Besov空间B_(p,q)~s(R^2),s>1+2/p,1<p<+∞,1≤q≤+∞和临界Besov空间B_(p,1)^(1+2/p)(R^2),p∈(1,+∞)局部解的存在性和唯一性,并且得到了局部解仅使用▽θ的爆破准则,该准则将Beale-Kato-Majda型准则推广到了齐次Besov空间B_(∞,∞)~0(R^2). In this paper,we study the 2D invisid Boussinesq equations,and prove the local existence and uniqueness of solutions in Besov space Bp,q^s(R^2) for super critical case s1+2/p,1p+∞,1≤q≤+∞,and critical case s = 1 +2/p with p∈(1,+∞) and q = 1.The blow-up criteria of the local solutions constructed are also obtained,which improves the Beale-Kato-Majda type criterion in homogeneous Besov space B∞,∞^0(R^2).Moreover,our blow-up criteria are only imposed on▽θ.
作者 原保全
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2010年第3期455-468,共14页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金资助项目(10771052) 河南省创新型科技人才队伍建设工程 河南省高校科技创新人才支持计划(2009HASTIT007) 河南理工大学博士基金(B2008-62)
关键词 BOUSSINESQ方程组 BESOV空间 存在性与唯一性 爆破准则 Boussinesq equations Besov spaces existence and uniqueness blow-up criteria
  • 相关文献

参考文献1

二级参考文献1

共引文献7

同被引文献20

  • 1GERBEAU J F, LEBRIS C. Existence of solution for a density-dependent magnetohydrodynamic equation [ J ]. Adv Differential Equations, 1998, 2 (3) : 427 - 452.
  • 2DESJARDINS B, LEBRIS C. Remarks on a nonhomoge- neous model of magnetohydrodynamics [ J ]. Differential and Integral Equations, 1998, 11 (3) : 377 - 394.
  • 3ABIDI H, HMIDI T. Rrsuhats d'existence dans des es- paces critiques pour le syst~me de la MHD inhomogbne [J]. Ann Math Blaise Pascal, 2007, 14: 103- 148.
  • 4ABIDI H, PAICU M. Global existence for the MHD sys- tem in critical spaces [ J ]. Proc Roy Soc Edinburgh Sect A, 2008, 138:447-476.
  • 5HU X P, WANG D H. Global existence and large-time behavior of solutions to the three-dimensional equations of compressible magnetohydrodynamic flows [ J ]. Arch Ra- tion Mech Anal ,2010,197:203 - 238.
  • 6LU M, DU Y, YAO Z A. Blow-up criterion for compres- sible MHD equations [ J]. J Math Anal Appl, 2011, 379 : 425 -438.
  • 7BIAN D F, YUAN B Q. Well-posedness in super critical Besov spaces for the compressible MHD equations [ J ]. International Journal of Dynamical Systems and Differenti- al Equations, 2011, 3 : 383 - 399.
  • 8DANCHIN R. Local theory in critical spaces for compres- sible viscous and heat-conductive Gases [ J]. Comm Par- tial Differential Equations, 2001, 26: 1183- 1233.
  • 9DANCHIN R. Global existence in critical spaces for com- pressible Navier-Stokes equations [ J ]. Invent Math, 2000, 141 : 579 - 614.
  • 10DANCHIN R. On the uniqueness in critical spaces for compressible Navier-Stokes equations [ J ]. Nonlinear Differential Equations Appl, 2005, 12 : 111 - 128.

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部