期刊文献+

(2+2)-Dimensional Discrete Soliton Equations and Integrable Coupling System

(2+2)-Dimensional Discrete Soliton Equations and Integrable Coupling System
下载PDF
导出
摘要 In this paper, we extend a (2+2)-dimensional continuous zero curvature equation to (2+2)-dimensional discrete zero curvature equation, then a new (2+2)-dimensional cubic Volterra lattice hierarchy is obtained. Fhrthermore, the integrable coupling systems of the (2+2)-dimensional cubic Volterra lattice hierarchy and the generalized Toda lattice soliton equations are presented by using a Lie algebraic system sl(4).
作者 于发军 李丽
出处 《Communications in Theoretical Physics》 SCIE CAS CSCD 2010年第5期793-798,共6页 理论物理通讯(英文版)
基金 Supported by the Research Work of Liaoning Provincial Development of Education under Grant No. 2008670
关键词 discrete soliton hierarchy integrable couplings generalized Toda equation cubic Volterra lattice equation 可积耦合系统 晶格孤子方程 Volterra型 离散 零曲率方程 立方晶格 层次结构 代数系统
  • 相关文献

参考文献22

  • 1P.R. Gordoa and A. Pickering, Europhys. Lett. 47 (1999) 21.
  • 2M. Blaszak and K. Marciniak, J. Math. Phys. 35 (1994) 4661.
  • 3P.R. Gordoa and A. Pickering, J. Phys. A 33 (2000) 557.
  • 4P.R. Gordoa, N. Joshi, and A. Pickering, Publ. RIMS (Kyoto) 37 (2001) 327.
  • 5G.Z. Tu, J. Phys. A 26 (1990) 3903.
  • 6W.X. Ma and B. Fuchssteiner, J. Math. Phys. 40 (1999) 2400.
  • 7A.K. Svinin, J. Phys. A: Math. Gen. 35 (2002) 2045.
  • 8Y.T. Wu and X.G. Geng, J. Math. Phys. 37(5) (1996) 2338.
  • 9D. Levi and L. Martina, J. Phys. A: Math. Gen. 34 (2001) 10357.
  • 10G. Pucacco and K. Rosquist, J. Math. Phys. 46 (2005) 012701.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部