期刊文献+

LOCAL CENTRAL LIMIT THEOREM AND BERRY-ESSEEN THEOREM FOR SOME NONUNIFORMLY HYPERBOLIC DIFFEOMORPHISMS 被引量:1

LOCAL CENTRAL LIMIT THEOREM AND BERRY-ESSEEN THEOREM FOR SOME NONUNIFORMLY HYPERBOLIC DIFFEOMORPHISMS
下载PDF
导出
摘要 We prove that, for non-uniformly hyperbolic diffeomorphisms in the sense of Young, the local central limit theorem holds, and the speed in the central limit theorem is O(1/√n). We prove that, for non-uniformly hyperbolic diffeomorphisms in the sense of Young, the local central limit theorem holds, and the speed in the central limit theorem is O(1/√n).
作者 夏红强
机构地区 College of Sciene
出处 《Acta Mathematica Scientia》 SCIE CSCD 2010年第3期701-712,共12页 数学物理学报(B辑英文版)
基金 Supported by NSF of China (10571174) the Scientific Research Foundation of Ministry of Education for Returned Overseas Chinese Scholars the Scientific Research Foundation of Ministry of Human and Resources and Social Security of China for Returned Overseas Scholars
关键词 Local central limit theorem Berry-Esseen theorem nonuniform hyperbolic diffeomorphism Henon map Local central limit theorem Berry-Esseen theorem nonuniform hyperbolic diffeomorphism Henon map
  • 相关文献

参考文献12

  • 1Aaronson J, Denker M. A local limit theorem for stationary processes in the domain of attraction of a normal distribution//Balakrinshnan D, Ibragimov I A, Nevzorov V B, Asymptotic methods in probability and statistics with applications. St. Petersburg: Birkhauser, 2001:215-224.
  • 2Aaronson J, Denker M. Local limit theorems for partial sums of stationary sequences generated by Gibbs- Markov maps. Stoch Dyn, 2001, 1:193-237.
  • 3Benedicks M, Caxleson L. The dynamics of the Henon map. Ann Math, 1991, 133:73-169.
  • 4Breiman L. Probability. Reading: Addison-Wesly, 1968.
  • 5Dunford N, Schwartz J T. Linear operators. Part I. General theory. New York: John Wiley & Sons Inc, 1988.
  • 6Gouezel S. Berry-Esseen theorem and local limit theorem for non-uniformly expanding maps. Annales de I'IHP Probabilites et Statistiques, 2005, 41:997-1024.
  • 7Couezel S. Central limit theorem and stable laws for intermittent maps. Probab Theory and Rel Fields, 2004, 128:82 -122.
  • 8Guivarch Y, Hardy J. Theoremes limites pour une classe de chaines de Markov et applicatios aux diffeomorphisms d'Anosov. Ann Inst H Poincare Probab Statist, 1988, 24:73-98.
  • 9Guivarch Y, Le Jan Y. Asymptotic winding of the geodesic flow on modular surfaces and continuous fractions. Ann scient Ec Norm Sup, 1993 4:23-50.
  • 10Parry W, Potlicott M. Zeta functions and the periodic structure of hyperbolic dynamics. Asterisque, 1990, 187/188:1-268.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部