期刊文献+

气动变量参数化的压气机转子三维数值优化 被引量:1

Numerical aero-optimization method for three-dimensional compressor rotor with parameterized aerodynamic variables
原文传递
导出
摘要 采用"试验设计+响应面模型+遗传算法"的优化设计体系,结合压气机设计常用的叶片造型程序和流场模拟软件,搭建了轴流压气机叶片三维优化设计平台,并对某涡喷发动机加零级压气机的零级转子进行了优化.优化目标为极大化转子的设计点绝热效率.约束条件为流量、增压比基本不变.分别以相对气流角和气流脱轨角作为优化自变量,进行了两个算例的优化.即为与现代设计系统相接轨,不同于叶片几何参数优化,取设计中具有物理含义的气动参数作为优化自变量.优化后的绝热效率分别提高了0.82和0.73个百分点. Employing the strategy of "experimental design+ response surface model + genetic algorithm",a response surface model code based on the artificial neural network and a genetic algorithm code were developed;and this paper established a numerical aero-optimization platform for three-dimensional(3-D) axial-flow compressor blade.This integral platform contains also the commonly used arbitrary camber line airfoil and blade formatting code and 3-D computational fluid dynamics solver.A fulfilled inverse-design of a zero-stage compressor rotor of a turbojet engine was optimized by this platform.The optimization object is to achieve the maximum adiabatic efficiency at the design point,while the mass flow rate and total pressure ratio are kept unchanged as the constraints.The relative flow-angle and the inner-blade deviation-angle are chosen separately as the independent-variables in two optimization cases.In order to directly couple the optimization method with the modern design system,the aerodynamic variables with physical meanings were chosen instead of the commonly used geometric variables as the optimization independent-variables.As compared with the original rotor,the adiabatic efficiencies of two optimal rotors increase by 0.82 and 0.73 percentage points,respectively.It shows that 3-D optimization method based on the aerodynamic variables has a good performance.
作者 何柳 单鹏
出处 《航空动力学报》 EI CAS CSCD 北大核心 2010年第4期884-890,共7页 Journal of Aerospace Power
基金 中航工业燃气涡轮研究院外委课题
关键词 轴流压气机 叶片造型 气动数值优化 人工神经网络 遗传算法 axial flow compressor airfoil and blade formatting numerical aerodynamic optimization artificial neural network genetic algorithm
  • 相关文献

参考文献7

二级参考文献20

  • 1季路成,陈江.叶轮机非定常气动设计的缘线匹配(I)理论与实施方法[J].推进技术,2005,26(4):307-312. 被引量:3
  • 2Due H F,Teledyne CAE,Toledo OH.Development of the model 373 turbojet engine[R].AIAA-87-1908,1987/San Diego,California.
  • 3Katoh Y,Hamatake H.Investigation of the aerodynamic performance of a transonic inlet stage of an axial flow compressor[R].AIAA 98-3415,1998/Cleveland,OH.
  • 4Haftka RT,Scott EP,Cruz JR.Optimization and experiments:a survey[J].Appl Mech Rev,1997,51 (7):435 ~448.
  • 5Beachkofski B,Grandhi R.Improved distributed hypercube sampling[R].AIAA 2002-1274.
  • 6Neubert R J,Hobbs D E,Weingold H D.Application of sweep to improve the efficiency of a transonic fan,part 1 Design[R].AIAA 90-1915.
  • 7Wadia A R,Szucs P N,Crall D W.Inner working of aerodynamic sweep[R].ASME 97-GT-401.
  • 8Prince D C J.Three-dimensional shock structures for transonic/supersonic compressor rotors[J].Journal of Aircraft,1980,17(1).
  • 9June Chung,Ki D Lee.Shape optimization of transonic compressor blades using quasi-3D flow physics[R].ASME 2000-GT-489.
  • 10Stephane Burguburu,Arnaud le Pape.Improved aerodynamic design of turbomachinery bladings by numerical optimization[J].Aerospace Science and Technology,2003,(7):277 ~287.

共引文献11

同被引文献14

  • 1朱芸.复杂转子系统支承阻尼优化设计[J].海军工程大学学报,2000,12(2):53-57. 被引量:1
  • 2Lee D S,Choi D H. Reduced weight design of a flexible ro- tor with ball bearing stiffness characteristics varying with rotational speed and load[J].Journal of Vibration and A- coustics, 2000,122 (3) 203-208.
  • 3Pugachev A O. Application of gradient-based optimization methods for a rotor system with static stress,natural fre- quency,and harmonic response constraints[J]. Structural and Multidisciplinary Optimization,2013,47(6) 951-962.
  • 4Choi B K,Yang B S. Multiobjective optimum design of ro- tor-bearing systems with dynamic constraints using im- mune-genetic algorithm[J]. Journal of Engineering for Gas Turbines and Power,2001,123(1) :78-81.
  • 5Hirani H,Suh N P. Journal bearing design using multiob- jective genetic algorithm and axiomatic design approaches [J]. Tribology International,2005,38(5) :481-491.
  • 6Strauβ F, Inagaki M, Starke J. Reduction of vibration levelin rotordynamics by design optimization[J]. Structural and Multidisciplinary Optimization,2007,34(2) :139-149.
  • 7Zitzler E, Laumanns M, Thiele L. SPEA2: improving the strength Pareto evolutionary algorithm[R]. Swiss Federal Institute of Technology TIK-Report 103,2001.
  • 8Srinivas N,Deb K. Multiobjective optimization using non- dominated sorting in genetic algorithms[J].Evolutionary Computation, 1995,2 (3) :221-248.
  • 9王东华,刘占生,窦唯.一种改进的转子系统临界转速调整方法[J].航空动力学报,2008,23(8):1449-1454. 被引量:8
  • 10于瑾,高建,任朝辉.转子系统的动态优化设计研究[J].机械设计与制造,2012(4):241-243. 被引量:5

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部