期刊文献+

基于故障树与BAM神经网络的智能故障诊断方法 被引量:4

The Method of Intelligent Fault Diagnosis Based on Fault Tree and BAM Neural Network
下载PDF
导出
摘要 在研究故障树分析(FTA)和双向联想记忆(BAM)神经网络在故障诊断中应用的基础上,提出了一种融合FTA和BAM的故障诊断方法。故障树存贮了系统关于顶事件发生的全部知识,利用FTA得到系统所有的故障模式,进而归纳出BAM的学习样本,即故障树中故障现象(监测点状态组合)和底事件发生与否之间的对应。BAM通过联想记忆矩阵并行联想,得到诊断结果,扩展综合故障诊断能力。用上述方法进行仿真分析,结果表明该方法用于解决此类问题是有效的。 Based on the study about the application of Fault Tree Analysis and Bidirectiongal Associative Memory network in fault diagnosis,a method of fault diagnosis based on the fuse of FTA and BAM is proposed.In a system,all the knowledge on the happening of top events is stored in Fault tree,so all of the fault modes are obtained by using FTA,and then the learning sample of BAM are summarized which are the corresponding relations between the fault phenomena(the states of the assembled monitoring points)and the happening or not of the bottom events in fault tree.The results of diagnosis are associated parallel by the associative memory matrix,thus expanding the general ability of fault diagnosis.A simulation analysis with the method mentioned above is performed,and results showed that the approach is valid to the fault diagnosis of systems.
作者 刘迅
出处 《科学技术与工程》 2010年第13期3101-3105,共5页 Science Technology and Engineering
关键词 故障树 BAM 神经网络 故障诊断 fault tree analysis bidirectional associative memory neural network fault diagnosis
  • 相关文献

参考文献9

  • 1蔡宗平,汤正平,王跃钢,史磊.控制系统故障诊断浅析[J].电光与控制,2007,14(4):19-22. 被引量:10
  • 2陈炜,吴志良.故障诊断专家系统结合故障树技术的结构研究[J].航海技术,2005(6):43-45. 被引量:15
  • 3陈洁,杨兆建,高强.基于ANNES的矿井提升机故障诊断系统模型[J].机械管理开发,2004,19(2):14-15. 被引量:4
  • 4付琼.智能故障诊断技术的研究与应用.大连:大连理工大学,2002.
  • 5Yi Hongying,Lee Lunhui,HsingChengheng.Application of fuzzy fault-tree analysis to assess the reliability of a protection system for a switchyard.International Journal of Emerging Electric Power Systems,2008;9(4):1-6.
  • 6郭伟伟.基于故障树技术的远程故障诊断专家系统的研发.西安:西北工业大学,2007.
  • 7Zhi Dusheng,Chen Zengqiang,Yuan Zhuzhi.Sensitivity to noise in bidirectional associative memory (BAM).IEEE Transactions on Neural Networks,2005;16(4):887-898.
  • 8Chang Hong,Feng Zuren.Object recognition and tracking with maximum likelihood bidirectional associative memory networks.Neurocomputing,2008;72(1-3):278-292.
  • 9郝爱国 故障树定量计算算法研究及计算机实现.石家庄:河北工业大学,2005.

二级参考文献23

共引文献22

同被引文献24

  • 1宋志丹,王玉森.基于故障树最小割集的故障诊断方法[J].兵工自动化,2004,23(6):65-66. 被引量:15
  • 2LugerGeorgeF.人工智能:复杂问题求解的机构与策略(原书第6版)[M].郭茂祖,刘扬,玄萍,等,译.北京:机械工业出版社,2010:369-377.
  • 3Fa Bo, Yin Yixin, Fu Cunfa. The bidirectional associative memory neural network based on fault tree and its application to inverter's faultdiagnosis[C]. Intelligent Computing and Intelligent Systems, 2009.ICIS 2009. IEEE International Conference, 2009:209 - 213.
  • 4Wang Yingying, Li Li, Chang Ming, et al. Fault diagnosis expert system based on integration of fault-tree and neural network[C]. Computational Intelligence and Software Engineering, 2009.CiSE 2009. Intemational Conference, 2009: 1-4.
  • 5Jaleel J A, Sadina M F. Reliability analysis using fault tree method and its prediction using neuralnetworks[C].Control Communication and Computing (ICCC), 2013 International Conference, 2013:119 - 124.
  • 6胡严思.基于FTA和BAM神经网络的飞机故障诊断系统研究[D].湖南大学2012
  • 7Fa Bo,Yin Yixin,Fu Cunfa.The bidirectional associative memory neural network based on fault tree and its application to inverter’’s fault diagnosis. . 2009
  • 8连可,黄建国,龙兵.一种基于有向图模型的模糊多故障诊断算法[J].系统工程与电子技术,2008,30(3):568-571. 被引量:13
  • 9苗伟,范波,王新勇,马建伟.一种融合FTA与BAM的故障诊断方法[J].微电子学与计算机,2010,27(6):60-63. 被引量:4
  • 10王家林,夏立,吴正国,杨宣访.电力系统故障诊断研究现状与展望[J].电力系统保护与控制,2010,38(18):210-216. 被引量:60

引证文献4

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部