期刊文献+

L_p-极投影Brunn-Minkowski不等式

L_p-Polar Projection Brunn-Minkowski Inequality
下载PDF
导出
摘要 将经典的对偶混合体积概念推广到L_p空间,提出了"q-全对偶混合体积"的概念.将传统的p≥1的L_p投影体概念拓展,提出p<1时的L_p投影体和混合投影体概念,并且建立了L_p-极投影Brunn-Minkowski不等式.作为应用,推广了熟知的极投影Brunn-Minkowski不等式,获得了投影Brunn-Minkowski不等式的L_p空间的极形式. In this paper, the authors first generalize the notion of classical dual mixed volume to Lp-space and introduce the notion of q-dual mixed volume. Moreover, they extend the notion of classical Lp(p ≥ 1)-projection bodies and introduce the notions of Lp(p 〈 1)-projection and mixed projection bodies, and establish the Brunn-Minkowski inequality for Lp-polar mixed projection bodies. As applications, the well-known Brunn- Minkowski inequality for polar of projection bodies is generalized and an Lp-polar form of Brunn-Minkowski inequality for projection bodies is obtained.
出处 《数学年刊(A辑)》 CSCD 北大核心 2010年第2期239-246,共8页 Chinese Annals of Mathematics
基金 国家自然科学基金(No.10971205) 香港特别行政区研究资助局(No.HKU7016/07P)资助的项目
关键词 q-对偶混合体积 Lp-极投影体 Lp-混合投影体 Brunn—Minkowski不等式 q-dual mixed volumes, Lp-polar projection bodies, Lp-mixed pro-jection bodies, Brunn-Minkowski inequality
  • 相关文献

参考文献30

  • 1Bolker E D.A class of convex bodies[J].Trans Amer Math Soc,1969,145:323-345.
  • 2Ball K.Shadows of convex bodies[J].Trans Amer Math Soc,1991,327:891-901.
  • 3Bourgain J,Lindenstrauss J.Projection bodies[M] //Israel Seminar (GAFA) 1986-1987,Lecture Notes in Math.1317,Berlin,New York:Springer-Verlag,1988:250-269.
  • 4Brannen N S.Volumes of projection bodies[J].Mathematika,1996,43:255-264.
  • 5Chakerian G D,Lutwak E.Bodies with similar projections[J].Trans Amer Math Soc,1997,349:1811-1820.
  • 6Gordon Y,Meyer M,Reisner S.Zonoids with minimal volume-product-a new proof[J].Proc Amer Math Soc,1988,104:273-276.
  • 7Lutwak E.Intersection bodies and dual mixed volumes[J].Adv Math,1988,71:232-261.
  • 8Lutwak E.Centroid bodies and dual mixed volumes[J].Proc London Math Soc,1990,60:365-391.
  • 9Reisner S.Zonoids with minimal volume-produt[J].Math Zeitschr,1986,192:339-346.
  • 10Schneider R.Convex bodies:the Brunn-Minkowski theory[M].Cambridge:Cambridge University Press,1993.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部