期刊文献+

基于模糊模型和神经网络的某扫雷犁系统建模 被引量:1

Modelling of the Electrohydraulic Servo System of a Certain Mine Sweeping Plough Based on Fuzzy Model and Neural Network
下载PDF
导出
摘要 在实现扫雷犁系统准确位置控制的研究中,由于扫雷犁电液伺服系统固有的流量-压力特性等非线性因素,采用传统机理建模方法难以获得其精确模型,研究了系统的两种智能建模方法,即模糊建模和神经网络建模。模糊建模方法采用基于GK聚类算法的TS模糊模型,神经网络建模中采用了基于正交最小二乘算法的径向基函数神经网络。通过对扫雷犁电液伺服系统进行的建模实验仿真,分析了两方法的建模性能并与其他建模方法进行了对比,研究结果验证了所提出两种建模方法的有效性。 The mine sweeping plough is a certain type of electrohydraulic servo system with complex nonlinear characteristics including flow/pressure relation, etc, and it is difficult to construct its accurate model by first principle method. This presented study focused on modeling the system using two intelligent methods, i.e. fuzzy modeling and neural network modeling. TS fuzzy model based on GK clustering algorithm is adopted in fuzzy modeling and radial basis function (RBF) neural network based on orthogonal least square method is used in neural network modeling. The two proposed methods are applied to the electrohydraulic servo system, and the results show their validity compared with other modelling techniques.
出处 《计算机仿真》 CSCD 北大核心 2010年第5期21-26,108,共7页 Computer Simulation
关键词 电液伺服系统 建模 径向基函数神经网络 Electrohydraulic servo system Modeling RBF neural network
  • 相关文献

参考文献16

二级参考文献98

共引文献128

同被引文献8

  • 1Doyle M, Fuller T F, Newman J. Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell[J]. Journal of the Electrochemical Society, 1993, 140(6):1526-1533.
  • 2Fuller T F, Doyle M, Newman J. Simulation and optimization of the dual lithium ion insertion cell[J]. Journal of the Electrochemical Society, 1994, 141(1):1-10.
  • 3Domenico D, Fiengo G, Stefanopoulou A. Lithium-ion battery state of charge estimation with a kalman filter based on an electro chemical model[J]. Proceedings of IEEE International Conference on Control Applications, 2008: 702-707.
  • 4Speltino C, Domenico D, Fiengo G, et al. Comparison of reduced order lithium-ion battery models for automotive applications. Joint 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference[C], Shanghai,China, 2009.
  • 5Massimo Ceraolo. New Dynamical Models of Lead-Acid Batteries [J]. IEEE TRANSACTIONS ON POWER SYSTEMS.VOL. 15, NO. 4, NOVEMBER 2000:1184-1190.
  • 6US Department of Energy. PNGV Battery Test Manual, Revision 3[M]. Washington, USA: US Department of Energy, 2001: D-4.
  • 7INEEL, United States Idaho National Engineering & Environmental Laboratory. Freedom CAR Battery Test manual [M]. revision 3.
  • 8US Department of Energy. USABC electric vehicle Battery Test Procedure Manual [M]. Washington, USA: US Department of Energy.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部