摘要
以圣维南方程组为基础,建立了具有堰的环状河网非恒定流数学模型。采用Preissman四点隐格式法对圣维南方程组进行离散,并考虑了堰的影响,利用河网的三级解法编制河网非恒定流的计算程序求解各断面的水位Z和流量Q。对于堰出流的模拟,根据堰的上下游条件,给出了环状河网中有内部边界堰存在时追赶系数的一种新的推求方法,提出了适用于环状河网中自由出流和淹没出流的算法。实例研究表明,该模型是可靠的,可以用于河网水流治理工程的数值模拟研究,并且提供了一种处理明渠分流的工具,对实际工程有一定的指导意义。
Based on Saint-Venant equations,unsteady flow mathematical model for looped river networks with weirs was established.Preissmann implicit four point scheme was used for solving Saint-Venant equations.The model considers effecting of controlling project of weirs on the water flow.Computer program of unsteady flow was compiled by using three-level solution method for channel-junction-channel to simulate the river networks,and the Gauss elimination method was used to calculate the sparse matrix.The chasing coefficients of internal boundary conditions,such as weirs,were deduced by a new method in the looped river networks.Sample result shows that the new method of deducing the chasing coefficients is reliable.The hydrodynamic model can be applied to water quality regulation project,and the model also provides an effective tool to handle the problem of flood routing for an open channel network,and offers useful reference for practical engineering.
出处
《水动力学研究与进展(A辑)》
CSCD
北大核心
2010年第3期398-405,共8页
Chinese Journal of Hydrodynamics
基金
国家重点基础研究发展计划项目(2005CB724202)
国家自然科学基金项目(50839001)
辽宁省教育高等学校科技研究项目资助
关键词
环状河网
非恒定流
堰
数学模型
looped river networks
unsteady flow
weir
mathematical model