期刊文献+

基于球面散射相似性的POLSAR图像分类方法 被引量:1

Classification for POLSAR Images Based on Surface Scattering Similarity
下载PDF
导出
摘要 针对基于H-Alpha平面的目标分类方法运算量偏大的问题,本文研究了基于散射相似性的极化合成孔径雷达(POLSAR)图像分类。首先在分析现有目标散射相似性度量参数的不足基础上,利用目标相干矩阵定义了目标散射相似性的新度量参数。该参数综合考虑了目标主散射机制、次要散射机制与规范目标的相似性,以及不同散射机制对应的发生概率,因而它能准确反映目标与规范目标的散射相似程度。接着,考虑到表面散射在自然界中是一种普遍的散射类型,利用新参数提取了表面散射相似性参数,并从理论上分析了该参数表征目标散射类型的可行性及它与平均Alpha角、极化散射熵的约束关系。最后,利用San Francisco地区AIRSAR极化数据验证了表面散射相似性替代平均Alpha角的有效性,并讨论了表面散射相似性参数分别与现有极化散射熵替代参数的组合分类效果。实验结果表明,基于简单线性近似参数+表面散射相似性的H-Alpha替代方法更具实用性。 Aiming at the deficiency of the classification based on H-Alpha polarimetric decomposition theorem, we study the classification for POLSAR images ba.sed on scattering similarity. Firstly, a new parameter is proposed to measure the scattering similarity between targets. As this parameter contains all scattering similarities between the scattering mechanisms of a distributed target and canonical mechanism, it describes accurately the degree of average scattering similarity between a distributed target and a canonical target. As an application, we analyze the feasibility of the scattering similarity parameter corresponding to the sphere scattering in the extraction of average scattering theoretically. Furthermore, we also discuss the classification scheme with the scattering similarity corresponding to the sphere scattering and the polarimetric scattering entropy and give the boundary of the effective classification region theoretically. With the AIRSAR data of San Francisco, the veracity of scattering similarity in measuring the degree of average scattering similarity and the effective of the scattering similarity corresponding to the sphere scattering are validated.
出处 《信号处理》 CSCD 北大核心 2010年第5期659-664,共6页 Journal of Signal Processing
关键词 目标相似性测度 目标散射特征提取 分布式目标 Target similarity measurement extraction of scattering characteristic distributed targets
  • 相关文献

参考文献13

  • 1Huynen J R. Phenomenological theory of radar target [ D ]. PhD. Dissertation. Technical University, Delft, The Neth- erlands, 1970.
  • 2Cloude S R, Pottier E. A review of target decomposition theorems in radar polarimetry [ J ]. IEEE Trans. Geosci. Remote Sens. , 1996, 34(2) : 498-518.
  • 3Krogager E. A new decomposition of the radar target scattering matrix [J]. Electro. Lett.., 1990, 26(18): 132- 143.
  • 4Cameron W L. Feature motivated polarization scattering matrix decomposition [ C ]. IEEE international radar conference, 1990, 549-557.
  • 5Freeman A, Durden S L. A three-component scattering model for polarimetric SAR data [ J ]. IEEE Trans. Geosci. Remote Sens. , 1997, 36(2) : 963-973.
  • 6Cloude S R. An entropy based classification scheme for land applications of polarmetric SAR data [ J ]. IEEE Trans. Geosci. Remote Sens. , 1997, 35(1) : 68-78.
  • 7Yang J, Peng Y N, Lin S M. Similarity between two scattering matrices [ J ]. Electro. Lett., 2001,37 (3) : 193- 194.
  • 8徐俊毅,杨健,彭应宁.双波段极化雷达遥感图像分类的新方法[J].中国科学(E辑),2005,35(10):1083-1095. 被引量:9
  • 9于大洋,周露,杨健,彭应宁.基于极化合成孔径雷达数据的桥梁检测[J].清华大学学报(自然科学版),2005,45(7):888-891. 被引量:11
  • 10范立生,杨健,彭应宁.基于交叉熵的特征提取与河流区域的目标检测[J].系统工程与电子技术,2006,28(3):339-341. 被引量:4

二级参考文献26

  • 1Kong J A, Swartz A A. Identification of terrain cover using the optimal terrain classifier. J Electronmagn. Waves Applicat, 1988, 2: 171~194.
  • 2Lee J S, Grunes M R, Kowk R, et al. Classification of multi-look polarimetric SAR imagery based on complex Wishart distribution. Int J Remote Sensing, 1994, 15(11): 2299~2311.
  • 3Kwok R, Hara Y, Atkins R G, et al. Application of neural networks to sea ice classification using polarimetric SAR images. In: Proceedings of IGARSS'91, 1991. 1: 85~88.
  • 4Tzeng Y C. A dynamic learning neural network for remote sensing application. IEEE Trans Geosci Remote Sensing, 1995, 32(5): 1096~1102.
  • 5Chen K S, Huang W P, Tsay D H, et al. Classification of multifrequency polarimtric SAR imagery using a dynamic learning neural network. IEEE Trans Geosci Remote Sensing, 1996, 34(3): 814~820.
  • 6Tzeng Y C, Chen K S. A fuzzy neural network to SAR image classification. IEEE Trans Geosci Remote Sensing, 1998, 36(1): 301~307.
  • 7Hellmann M, Jager G, Kraetzschmar E, et al. Classification of full polarimetric SAR-data using artificial neural networks and fuzzy algorithms. In: Proceedings of IGARSS'99, 1999. 1995~1997.
  • 8Lueneburg E, Chandra M, Boerner W M. Random target approximations. In: Proc PIERS Progress in Electromagnetic Research Symposium, Noordwijk, The Netherlands, 1994. 1366~1369.
  • 9Yang J, Peng Y N, Lin S M. Similarity between two scattering matrices, electron Letters, 2001, 37(3): 193~194.
  • 10Huynen J R. Phenomenological theory of radar targets. Ph D Dissertation, 1970.

共引文献18

同被引文献4

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部