期刊文献+

Investigation of a Unified Chaotic System and Its Synchronization by Simulations

Investigation of a Unified Chaotic System and Its Synchronization by Simulations
原文传递
导出
摘要 We investigate a unified chaotic system and its synchronization including feedback synchronization and adaptive synchronization by numerical simulations. We propose a new dynamical quantity denoted by K, which connects adaptive synchronization and feedback synchronization, to analyze synchronization schemes. We find that K can estimate the smallest coupling strength for a unified chaotic system whether it is complete feedback or one-sided feedback. Based on the previous work, we also give a new dynamical method to compute the leading Lyapunov exponent. We investigate a unified chaotic system and its synchronization including feedback synchronization and adaptive synchronization by numerical simulations. We propose a new dynamical quantity denoted by K, which connects adaptive synchronization and feedback synchronization, to analyze synchronization schemes. We find that K can estimate the smallest coupling strength for a unified chaotic system whether it is complete feedback or one-sided feedback. Based on the previous work, we also give a new dynamical method to compute the leading Lyapunov exponent.
出处 《Chinese Physics Letters》 SCIE CAS CSCD 2010年第6期31-34,共4页 中国物理快报(英文版)
基金 Supported by the HK UGC GRF PolyU5300/09E, the National Natural Science Foundation of China under Grant Nos 10672146 and 10805033, and the Shanghai Leading Academic Discipline Project (S30104).
  • 相关文献

参考文献30

  • 1Chen G R and Ueta T 1999 Int. J. Bifur. Chaos 9 1465.
  • 2Lu J H, Zhou T S and Zhang S C 2002 Chaos, Solitons Fractals 14 529.
  • 3Lu J H, Chen G R and Zhang S C 2002 Int. J. Bifur. Chaos 12 2917.
  • 4Wu X Q and Lu J A 2003 Whuan University Journal of natural sciences 8 808.
  • 5Lu J A, Wu X Q and Lii J H 2002 Phys. Lett. A 6 365.
  • 6Tao C H, Lu J A and Lii J H 2002 Acta Phys. Sin. 51 1479 (in Chinese).
  • 7Shan L, Li J and Wang Z H 2004 International Conference on Control, Automation, Robotics and Vision (Kunming, China 6-9 December) p 1928.
  • 8Lu J A, Tao C H, Lu J H and Liu M 2002 Chin. Phys. Lett. 19 632.
  • 9Cuomo K M and Oppenheim A V 1993 Phys. Rev. Lett. 71 65.
  • 10Hohl A, Gavrielides A, Erneux T and Kovanis V 1997 Phys. Rev. Lett. 78 4745.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部