期刊文献+

Al-Zn-Mg-Sc合金连续冷却转变曲线的测定 被引量:3

Measurment of continuous cooling transformation curves of Al-Zn-Mg-Sc aluminum alloy
下载PDF
导出
摘要 测定了Al-Zn-Mg-Sc合金固溶处理后的连续冷却转变(CCT)曲线,通过动态电阻法测得冷却过程的电阻-温度曲线,根据曲线斜率的变化规律确定相变开始点、结束点以及临界冷却速度范围,绘制出该合金的CCT图,通过扫描电镜和透射电镜分析观察连续冷却过程的组织转变.结果表明,动态电阻法测得的CCT图是可信的;在470℃,保温1 h固溶处理后,抑制相变发生的临界冷速在2 168.0℃/min以下,但高于716.8℃/min,相变主要集中在150~420℃的温度区间发生;当冷却速度较慢时,平衡相η在晶内和晶界大量析出并逐渐长大和粗化,当冷却速度较快时,合金保持了较高的过饱和度,冷却到70℃以下仍有相变发生. CCT curves of an Al-Zn-Mg-Sc alloy were tested in the paper.Electrical resistance-temperature curves during continuous cooling processes were obtained by in-situ resistance measurement.Beginning and ending temperatures of phase transformation and critical cooling rate range were established by analyzing slope change of those curves and CCT curves were drawn.Microstructure evolution during cooling was examined by SEM and TEM observation,EDS and EDP analysis.The results show that the CCT curves obtained by in-situ resistance measurement are credible.Critical cooling rate to prevent phase transformation during solution treatment in 470 ℃ for 1 h is above 716.8 ℃/min but below 2 168.0 ℃/min,phase transformation beginning and ending temperatures happened mainly in 150~420 ℃.Low speed cooling results in growth and coarsening of η equilibrium phase in grains and on grain boundaries.However,high speed cooling leads to high concentration of solute,which make precipitates happen when temperature is below 70 ℃.
出处 《材料与冶金学报》 CAS 2010年第1期43-50,共8页 Journal of Materials and Metallurgy
关键词 Al-Zn-Mg-Sc合金 CCT图 动态电阻 相变 连续冷却 Al-Zn-Mg-Sc alloy CCT curves in-situ electrical resistance phase transformation continuous cooling
  • 相关文献

参考文献5

二级参考文献46

  • 1贺永东,张新明.微量Cr、Mn、Ti、Zr细化7A55铝合金铸锭组织的效果与机理[J].中国有色金属学报,2005,15(10):1594-1601. 被引量:33
  • 2贺永东,张新明,游江海.复合添加微量铬、锰、钛、锆对Al-Zn-Mg-Cu合金组织与性能的影响[J].中国有色金属学报,2005,15(12):1917-1924. 被引量:15
  • 3李成功 巫世杰 等.先进铝合金在航空航天工业中的应用与发展[J].中国有色金属学报,2002,12(1):14-21.
  • 4NAKAI M, ETO T. New aspects of development of high strength aluminum alloys for aerospace applications [J]. Materials Scienceand Engineering, 2000, A285: 62-68.
  • 5WU Y L, FROES F H, ALVAREZ A, LI C G, LIU J. Microstructure and properties of a new super-high-strength Al-Zn-Mg-Cu alloy C912 [J]. Materials and Design, 1997, 18(4): 211-215.
  • 6PENG Kai-ying, CHEN Wen-zhe, ZHANG Hao-gao, QIAN Kuang-wu. Features of dynamic strain ageing in high strength Al-Zn-Mg-Cu alloy [J]. Materials Science and Engineering, 1997,A234-236: 138-141.
  • 7KAIBYSHEV O A, FAIZOVA S N, HAIRULLINA A E Diffusional mass transfer and superplastie deformation [J]. Acta Mater, 2000, 48:2093 -2100.
  • 8DESCHAMPS A, BREHET Y. Nature and distribution of quench-induced prccipitation in an Al-Zn-Mg-Cu alloy [J]. Scripta Materialia, 1998, 39(11): 1517-1522.
  • 9NAKAI M, ETO T. New aspects of development of high strength aluminum alloys for aerospace applications [J]. Materials Science and Engineering A, 2000, A285: 62-68.
  • 10ROKHLIN L L, DOBATKINA T V. Investigation of phase equilibria in alloys of Al-Zn-Mg-CuZr-Sc system [J]. Journal of Alloys and Compounds, 2004, 367: 10-16.

共引文献101

同被引文献14

引证文献3

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部