期刊文献+

基于兴趣度含正负项目的关联规则挖掘方法 被引量:17

Association Rule Mining Method Based on Interest Measure with Positive and Negative Items
下载PDF
导出
摘要 项目的引入使得挖掘出的频繁项集成倍增加,同时生成的关联规则数量更加庞大,引入兴趣度来约束从频繁项集中提取关联规则的数量。分析现有的兴趣度模型,从中选择了一种适合于含正负项目的关联规则挖掘的兴趣度方法,并且提出了置信度的一个性质,描述了含正负项目的频繁项集挖掘关联规则的算法,并对矛盾关联规则进行了分析。实验结果表明,该算法是有效和可行的。 Negative item brings the increase of frequent items and makes association rules doubled.Interest measure is adopted to restrict the amount.By analyzing current interest measure models,the deviation-based interest measure is chosen and the confidence property is presented.An association rule mining algorithm based on interest measure with positive and negative items is described.And the analysis of conflict association rules is given.The experimental results indicate the given algorithm is efficient and feasible.
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2010年第3期407-411,共5页 Journal of University of Electronic Science and Technology of China
基金 教育部留学回国人员启动基金(教外司留[2007]1108-10) 中国博士后科学基金(20070420711)
关键词 关联规则 置信度 兴趣度 负项目 association rule confidence measure interest measure negative item
  • 相关文献

参考文献10

  • 1AGRAWAL R,IMIELINAKI T,SWAMI A.Mining association rules between sets of items in large databases[C] //Proc of the ACM SIGMOD Conference on Management of Data.Washington,D C,USA:ACM,1993:207-216.
  • 2KLEMETTINEN M,MANNILA H,RONKAINEN P P,et al.Finding interesting rules from large sets of discovered association rules[C] //Proc of the Third Int'l Conference on Information and Knowledge Management.New York:ACM,1994:401-407.
  • 3SRIKANT R,AGRAWAL R.Mining quantitative association rules in large relational table[C] //Proc of the ACM SIGMOD Conf on Management of Data.Montreal,Canada:ACM,1996:1-12.
  • 4SYMTH P,GOODMAN R M.An information theoretic approach to rule induction from database[J].IEEE Transaction on Knowledge Data Engineering,1992,4(4):301-316.
  • 5周欣,沙朝锋,朱扬勇,施伯乐.兴趣度——关联规则的又一个阈值[J].计算机研究与发展,2000,37(5):627-633. 被引量:91
  • 6周皓峰,朱扬勇,施伯乐.一个基于兴趣度的关联规则采掘算法[J].计算机研究与发展,2002,39(4):450-457. 被引量:50
  • 7张玉芳,熊忠阳,彭燕,赵鹰.基于FP-Tree含正负项目的频繁项集挖掘算法[J].模式识别与人工智能,2008,21(2):246-253. 被引量:4
  • 8黄进,尹治本.关联规则挖掘的Apriori算法的改进[J].电子科技大学学报,2003,32(1):76-79. 被引量:51
  • 9THIRUVADY D R,WEBB G I.Mining negative rules using GRD[C] //Proc of PAKDD.Sydney,Australia:Springer Verlag,2004:161-165.
  • 10GAN M,ZHANG M,WANG S.One extended form for negative association rules and the corresponding mining algorithm[C] //Proc of the Fourth International Conference on Machine Learning and Cybernetics.Piscataway,NJ:[s.n.] ,2005:18-21.

二级参考文献16

  • 1卢炎生,饶丹.一种挖掘带否定关联规则的算法[J].计算机工程与科学,2004,26(10):63-65. 被引量:6
  • 2左万利 刘居正.包含正负属性的关联规则及其挖掘.第十六届全国数据库学术会议论文集[M].兰州,1999.288-292.
  • 3[1]Agrawal R, Srikant R. Fast algorithms for mining association rules[C]. In Proceeding of the 20th International Conference on Very Large Databases. 1994, 487-499
  • 4[2]Jong S P, Ming S C, Philip S Y. An effective hash based algorithm for mining association rules[C]. In Proceedings of the 1995 ACM SIGMOD International Conference On Management of Data. 1995, 24(2): 175-186
  • 5[3]Jiawei H, Micheline K. Data mining: concepts and techniques[C]. Morgan, 2001, 149-158
  • 6Aggarwal C C,Proc of the Int’ l Conf on Data Engineering,1998年,402页
  • 7Han J,Proc of Int’ l Conf Very Large Data Bases,1995年,420页
  • 8Han Jiawei, Kambr M. Data Mining: Concepts and Techniques. New York, USA: Elsevier, 2001
  • 9Boulicaut J F, Bykowski A, Jeudy B. Towards the Tractable Discovery of Association Rules with Negations // Proc of the 4th International Conference on Flexible Query Answering Systems. Warsaw, Poland, 2000: 425-434
  • 10Han Jiawei, Pei Jian, Yin Yiwen. Mining Frequent Patterns without Candidate Generation // Proc of the ACM SIGMOD International Conference on Management of Data. Dallas, USA, 2000 : 1-20

共引文献174

同被引文献99

引证文献17

二级引证文献72

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部