期刊文献+

山羊克隆胎儿不同组织中H19基因CpG岛甲基化模式及表达量检测 被引量:4

CpG island methylation patterns and expressions of H19 gene in cloned fetus of goat
原文传递
导出
摘要 表观重编程异常是核移植胚胎发育异常的重要原因。为了研究克隆山羊胎儿不同组织中H19基因CpG岛甲基化水平和相对表达量,本实验运用亚硫酸盐法和荧光实时定量PCR法分别检测了死亡克隆山羊胎儿和同期普通山羊胎儿(对照组)肝脏、胎盘、肾脏、肺脏和心脏组织中H19基因CpG岛甲基化水平和mRNA的相对表达量。结果表明,克隆山羊胎儿胎盘组织中H19基因第5个CpG岛的甲基化水平显著高于对照组(70%vs49.41%,P<0.05),H19基因相对表达量显著低于对照组(883.3vs1264.5,P<0.05);肺脏组织甲基化水平显著低于对照组(63.53%vs88.24%,P<0.05),相对表达量显著高于对照组(1003.4vs515.5,P<0.05);其他各组差异不显著(P>0.05)。结果说明,H19基因在克隆山羊胎儿部分组织中DNA甲基化重编程异常,而且这种异常影响H19基因的正常表达,这也可能是导致克隆动物死亡的重要因素之一。 The aberrant epigenetic reprogramme is an important cause for abnormal development of nuclear transfer embryos. The objective of this study was to investigate the CpG island methylation profiles and relative expression levels of H19 gene in different tissues of cloned goat fetus. We detected liver, placenta, kidney, lung and heart in the dead cloned goat fetus and the age-matched normal goat fetus (control) by using bisulfite sequencing and real time PCR. Results indicated that methylation levels of the fifth CpG island of H19 gene in dead cloned goat fetus was significant high compared with that in the control in placenta (70% vs 49.41%, P〈 0.05), and relative expression levels of H19 gene was significant low compared with that in the control (883.3 vs 1 264.5, P 〈0.05). Reversely, the methylation levels was significant low compared with that in the control in lung (63.53% vs 88.24%, P 〈0.05), and relative expression levels was significant high compared with that in the control (1 003.4 vs 515.5, P 〈0.05). The differences of others groups were insignificant (P〉 0.05). Results showed the abnormal DNA methylation proflies of H19 gene occurred in some tissues of cloned goat fetus, which affected normal expression levels of H19 gene, indicating that aberrant DNA methylation reprogramme may be one of the important factors for the death of cloned animals.
出处 《生物工程学报》 CAS CSCD 北大核心 2010年第5期582-587,共6页 Chinese Journal of Biotechnology
基金 国家"转基因品种培育"重大科技专项资金(No.2008ZX08007-004)资助~~
关键词 克隆 山羊 H19基因 CPG岛 甲基化模式 MRNA表达 clone goat H19 gene CpG island methylation pattern mRNA expression
  • 相关文献

参考文献29

  • 1Daniels R, Hall V J, French A J, et al. Comparison of gene transcription in cloned bovine embryos produced by different nuclear transfer techniques. Mol Reprod Dev, 2001, 60: 281-288.
  • 2Humpherys D, Eggan K, Akutsu H, et al. Abnormal gene expression in cloned mice derived from embryonic stem cell and cumulus cell nuclei. Proc Natl Acad Sci USA, 2002, 99: 12889-12894.
  • 3Wrenzycki C, Wells D, Herrrnann D, et al. Nuclear transfer protocol affects messenger RNA expression patterns in cloned bovine blastocysts. Biol Reprod, 2001, 65:309-317.
  • 4Jaenisch R, Bird A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet, 2003, 33(Supplement): 245-254.
  • 5Feng YQ, Desprat R, Fu H, et al. DNA methylation supports intrinsic epigenetic memory in mammalian cells. PLOS Genet, 2006, 2: 461-470.
  • 6Stein LD. Human genome: end of the beginning. Nature, 2004, 431(7011): 915-916.
  • 7Bartolomei MS, Tilghman SM. Genomic imprinting in mammals.Annu Rev Genet, 1997, 31: 493-525.
  • 8Morison IM, Paton C J, Cleverley SD. The imprinted gene and parent-of-origin effect database. Nucleic Acids Res, 2001, 29: 275-276.
  • 9Young LE, Fairburn HR. Improving the safety of embryo technologies: possible role of genomic imprinting. Theriogenology, 2000, 53: 627-648.
  • 10Paulsen M, Takada S, Youngson NA, et al. Comparative sequence analysis of the imprinted Dlk1-Gtl2 locus in three mammalian species reveals highly conserved genomic elements and refines comparison with the Igf2-H19 region. Genome Res, 2001, 11(12): 2085-2094.

二级参考文献26

  • 1Capuco A V, Wood D L, Baldwin R, Mcleod K, Paape M J. Mammary cell number, proliferation, and apoptosis during a bovine lactation: Relation to milk production and effect of bST. Journal of Dairy Science, 2001, 84: 2177-2187.
  • 2Capuco A V, Ellis S E, Hale S A, Long E, Erdman R A, Zhao X, Paape M J. Lactation persistency: Insights from mammary cell proliferation studies. Journal of Animal Science, 2003, 81: 18-31.
  • 3Gabig T G, Mantel P L, Rosli R, Crean C D. Requiem: a novel zinc finger gene essential for apoptosis in myeloid cells. Journal of Biology Chemical, 1994, 269: 29515-29519.
  • 4Chestkov A V, Baka I D, Kost M V, Georgiev G P, Buchman V L. The d4 gene family in the human genome. Genomics, 1996, 36(1): 174-177.
  • 5Gabig T C~ Crean C D, Klenk A, Long H, Copeland N G, Gilbert D J, Jenkins N A, Quincey D, Parente E Lespinasse E Carle G E Gaudray E Zhang C X, Calender A, Hoeppener J, Kas K, Thakker R V, Farnebo E The B T, Larsson C, Pieb_l E Lagercrantz J, Khodaei S, Carson E ,Weber G. Expression and chromosomal localization of the Requiem gene. Mammary Genome, 1998, 9: 660-665.
  • 6Guru S C, Weisemann Liotta L A, Agarwal S K, Manickam P, Olufemi S E, Crabtree J S, J M, Kester M B, Kim Y S, Wang Y, Emmert-Buck M R, Spiegel A M, Boguski M S, Roe B A, Collins F S, Marx S J, Burns L, Chandrasekharappa S C. A transcript map for the 2.8-Mb region containing the multiple endocrine neoplasia type 1 locus. Genome Research, 1997, 7:725-735.
  • 7Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2 (-Delta Delta C (T)) Method. Methods, 2001, 25: 402-408.
  • 8Strange R, Li F, Saures S, Burkhardt A, Friis R. Apoptotic cell death and tissue remodeling during mouse mammary gland involution. Development, 1992, 115: 49-58.
  • 9Marti A H, Ritter L P, Jaggi R. Transcription factor activities and gene expression during mouse mammary gland involution. Journal of Mammary Gland Biology Neoplasia, 1999, 4(2): 145-152.
  • 10Thangaraju M, Rudelius M, Bierie B, Raffeld M, Sharan S, Hennighausen L, Huang A M, Sterneck E. C/EBP is a crucial regulator of pro-apoptotic gene expression during mammary gland involution. Development, 2005, 132: 4675-4685.

同被引文献40

  • 1王珊,陈宏,蔡欣.牛MyoG基因启动子的克隆与序列分析[J].西北农林科技大学学报(自然科学版),2006,34(8):12-16. 被引量:17
  • 2Barlow D P. Gametic imprinting in mammals[J]. Science, 1995, 270(5242): 1610-1613.
  • 3Daniels R, Hall V,Trounson A O. Analysis of gene transcription in bovine nuclear transfer embryos reconstructed with granulosa cell nuclei[J]. Biol Reprod, 2000,63 : 1034- 1040.
  • 4Erhardt S,Lyko F,Ainscough J F X,et al. Polyeomb-group pro- teins are involved in silencing processes caused by a transgenie el- ement from the marine imprinted H19/Igf2 region in Drosophila [J]. Dev Genes Evol,2003,217(7) :336-344.
  • 5Farin C E, Farin P W, Piedrahita J A. Development of fetuses from in vitro-produced and cloned bovine embryos[J]. J Anim Sci,2004,82, 53-62.
  • 6Fulka J,Fulka H. Somatic cell nuclear transfer (SCNT) in mammals; the cytoplast and its reprogramming activities[J]. Adv Exp Med Biol,2007,591 : 93-102.
  • 7Jaenisch R, Bird A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals [J]. Nature Genet,2003,33(Suppl): 245-254.
  • 8Kremenskoy M,Kremenska Y,Suzuki M,et al. Epigenetic characterization of the CpG islands of bovine Leptin and POUSF1 genes in cloned bovine fetuses[J]. J Repord Dev, 2006,52 (2) : 277-285.
  • 9Lucifero D,Suzuki J,Bordiqnon V,et al. Bovine SNRPN methylation imprint in oocytes and day 17 in vitro produced and somatic cell nuclear transfer embryos. Biol Reprod,2006,75(4): 531-538.
  • 10Ogawa H,Ono Y,Shimozawa N,et al. Disruption of imprinting in cloned mouse fetuses from embryonic stem cells[J]. Reproduction,2003,126(4) : 549-557.

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部