期刊文献+

近红外快速检测中的独立分量和遗传神经网络建模方法 被引量:1

Modeling with Independent Component Analysis and GA-BP Network in Near Infrared Fast Checking
下载PDF
导出
摘要 采用独立分量分析方法提取近红外光谱的独立分量和影响矩阵,再用GA—BP神经网络对影响矩阵和浓度矩阵进行建模,提出了基于独立分量一遗传算法.人工神经网络回归的近红外光谱建模方法。分析了独立分量数和网络中间隐层的神经元数对模型性能的影响。采用该方法对小麦样品中的水分、蛋白质、淀粉3种主要成分含量进行测定,水分、蛋白质和淀粉的预测值和参考值之间的相关系数R分别为0.9670、0.9804、0.9674。 A method of model construction based on independent component analysis (ICA) , genetic algorithm (GA), back-propagation artificial neural networks (BP-ANN) regression is proposed for near infrared fast checking. The independent components and the contribution matrix of NIR spectra are extracted by ICA, and then the models of the contribution matrix and concentration matrix are built by GA-BP network. The influence of the numbers of independent components and the neurons in the hidden layer on the properties of the model is analyzed. This method has been applied to the fast determination of the content of three main components in the wheat samples. The correlation coefficients (R) between the reference values and the model predicted values of moisture, protein and gluten contents in validation set are 0. 9670, 0.9804 and 0. 9674, respectively.
出处 《计量学报》 CSCD 北大核心 2010年第3期285-288,共4页 Acta Metrologica Sinica
关键词 计量学 近红外光谱 快速检测 独立分量分析 遗传算法 Metrology NIR spectroscopy Fast checking Independent component analysis Genetic algorithm
  • 相关文献

参考文献7

  • 1Aapo H,Erkki O.Independent Component Analysis:Algorithms and Applications[J].Neural Networks,2000,13(4-5):411-430.
  • 2Hahn S,Yoon G.Identification of pure component spectra by independent component analysis in glucose prediction based on mid-infrared spectroscopy[J].Applied Optics,2006,45:8374-8380.
  • 3姚志湘,黄洪,刘焕彬.采用盲信号分离算法处理GC-FTIR信号[J].光谱学与光谱分析,2006,26(8):1432-1436. 被引量:6
  • 4毕贤,李通化,吴亮.独立组分分析在红外光谱分析中的应用[J].高等学校化学学报,2004,25(6):1023-1027. 被引量:27
  • 5Kruzlicova D,Mocak J,Balla B,et al.Classification of Slovak white wines using artificial neural networks and discriminant techniques[J].Food Chemistry,2009,112:1046-1052.
  • 6Ergezinger S.An accelerated learning algorithm for multilayer perceptions:layer by layer[J].IEEE Transaction on Neural Networks,1995,6:31-42.
  • 7周庆,叶洪.集成遗传算法及BP算法的潜在震源区划分[J].地震学报,2002,24(6):647-652. 被引量:2

二级参考文献18

  • 1周庆.2001.人工智能技术在确定潜在震源区中的应用--以华南沿海地区为例[D]:[学位论文].北京:中国地震局地质研究所,73~90
  • 2Leung Y. 1997.Intelligent Spatial Decision Support System[M].Berlin: Springer-Verlag,229~268
  • 3Whitly D. 1995. Genetic Algorithms and Neural Networks[M]. Canada: John Wiley & Sons, 203~216
  • 4Carlos G. F., Carsten A. B., Robert E. S.. Anal. Chem.[J], 2001, 73: 675-683
  • 5Hyvarinen A., Oja E.. Neural Networks[J], 2000, 13: 411-430
  • 6Hyvarinen A.. Neurocomputing[J], 1998, 22: 49-67
  • 7Hyvarinen A.. Neural Computation[J], 1999, 11(7): 1 739-1 768
  • 8LiangYi-Zeng(梁逸曾).White, Gray and Black Multicomponent Systems and Their Chemometrics Algorithms(白灰黑复杂多组分分析体系及其化学计量学算[M].Changsha: Hunan Publishing House of Science and Te,1996.165-.
  • 9Kiviluoto K., Oja E.. Proceedings of the International Conference on Neural Information Processing(ICONIP98), Vol.2[C],Tokyo, Japan, 1998: 895-898
  • 10Azarraga L. V., Hanna D. A.. GIFTS, Athens ERL GC/FT-IR Software and Users Guide[CP]

共引文献32

同被引文献32

  • 1王彩云,相秉仁,张伟,王正武,陈昌云.近红外光谱法快速检测牛奶中氯霉素残留[J].食品科学,2009,30(6):184-187. 被引量:18
  • 2张录达,赵丽丽,赵龙莲,李军会,严衍禄.MAXR回归法在近红外光谱定量分析及最优波长选择中的应用研究[J].光谱学与光谱分析,2005,25(8):1227-1229. 被引量:11
  • 3张录达,金泽宸,沈晓南,赵龙莲,李军会,严衍禄.SVM回归法在近红外光谱定量分析中的应用研究[J].光谱学与光谱分析,2005,25(9):1400-1403. 被引量:31
  • 4王动民,张军,赵滨.基于模拟退火算法的近红外光谱定标模型的简化[J].光谱实验室,2006,23(5):921-925. 被引量:3
  • 5严衍录,赵龙莲,杨曙明,等.近红外光谱分析基础与应用[M].北京:中国轻工业出版社,2005.
  • 6S Wold, H Antti, F Lindgren. Orthogonat signal correction of near-infrared spectra [ J ]. Chemometrics and Intelligent La- boratory Systems. 1998,44 ( 1-2 ) : 175 -185.
  • 7Liu Hexiao, Sun Laijun, Liu Mingliang. Determination of wet gluten in wheat based on wavelet de-noising and PLS[ C]/! New Technology of Agricultural Engineering ( ICAE ) , 2011 : 958-962.
  • 8Dan Peng, Junmin Ji, Xia Li, et al. Application of Wavelet Component Selection and Orthogonal Signal Correction in the Multivariate Calibration by Near-Infrared Spectroscopy [ J ]. Communications in Computer and Information Science,2011, 152:374-380.
  • 9Hui Zou, Trevor Hastie. Regularization and variable selec- tion via the elastic net[ J]. J. R. Statist. Soc. B. ,2005,67 : 301-320.
  • 10Guang-Hui Fu, Qing-Song Xu, Hong-Dong Li, et al. Elas- tic Net Grouping Variable Selection Combined with Partial Least Squares Regression (EN-PLSR ) for the Analysis of Strongly Multi - collinear Spectroscopic Data [ J ]. Applied Spectroscopy, 2011,65 ( 4 ) : 402- 408.

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部