期刊文献+

基于PSO的多目标生产经营参数优化

A PSO based Multi-objective optimization method for mine production
下载PDF
导出
摘要 矿产资源不可再生,应尽量开采低品位矿石以充分利用矿产资源,但低品位矿石会损害企业的经济效益。因此,如何合理确定矿山的矿石工业品位,达到延长企业寿命,充分利用资源,经济效益较优的目标具有非常重要的意义。论文基于矿山企业多目标优化的特性,利用粒子群算法(particle swarm optimization algorithm,PSO)对矿山企业多目标生产经营参数进行了优化。实现了对沃溪坑口的工业品位、开采规模、效益等多目标动态优化,为矿山企业生产提供了决策依据。 It is essential to make full use of mineral resources because it is Non-renewable. But low-grade ore would undermine economic efficiency of enterprises. Therefore, how to rationally determine the industrial grade ore mine, to extend the corporate life, full use of resources, highly profitable on economic objectives become very urgency, based on mining enterprises characteristics of multi-objective optimization, particle swarm optimization algorithm is adopt to optimize the multi-objective production parameters of mining enterprises, multi-objective parameter optimization PSO-based algorithm is proposed for production parameters for JinXin Gold Corporation, The multi optimization object such as mining grade, scale and gains can be get by PSO algorithm which provide a basis for decision making.
出处 《微计算机信息》 2010年第18期19-20,75,共3页 Control & Automation
关键词 多目标优化 PSO 参数优化 品位 经济评价 Multi-objective optimization PSO Parameter optimization grade economic evaluation
  • 相关文献

参考文献7

二级参考文献29

  • 1徐焘.矿量开发最佳集约化程度优选研究[J].中国国土资源经济,2004,17(12):4-5. 被引量:5
  • 2张宝仁,孙丽娜.岩金矿山级差品位指标的探讨[J].沈阳黄金学院学报,1995,14(2):125-131. 被引量:1
  • 3周媛,张颖超,刘雨华.基于支持向量机的综合评估方法的应用研究[J].微计算机信息,2006,22(02X):225-227. 被引量:12
  • 4江四海,李德斌.运用盈亏平衡品位进行低品位矿采选决策[J].江西有色金属,2006,20(1):22-25. 被引量:5
  • 5Kellenberger, E, Rodrigo, J, Muller, P, et al. Comparative evaluation of eight docking tools for docking and virtual screening accuracy. Proteins 2004, 57:225-242
  • 6Kontoyianni M, McClellan L. M,Sokol G. S. Evaluation of docking performance: Comparative data on docking algorithms [J]. J. Med. Chem. 2004, 56: 558-565.
  • 7Wang R, Lu Y, Wang S. Comparative evaluation of 11 scoring functions for molecular docking [J]. J. Med. Chem. 2003, 46:2287- 2303.
  • 8Reiji Teramoto and Hiroaki Fukunishi. Supervised consensus scoring for docking and virtual screening [J]. J. Chem. Inf. Model. 2007, 47:526-534
  • 9Pilsung Kang and Sungzoon Cho. EUS SVMs: Ensemble of Under-Sampled SVMsfor Data Imbalance Problems. [C]// Proceedings of 13th International Conference on neural information processing, Berlin-Heidelberg: Springer-Verlag, 2006:837-846
  • 10Hong Hu, Jiuyong Li, Ashley Plank, et al. A Comparative Study of Classification Methods for Microarray Data Analysis. [C]//Proceedings of the fifth Australasian conference on Data mining and analystics, Sydney: Australian Computer Society,2006:33-37

共引文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部