期刊文献+

Multiscale classification and its application to process monitoring

Multiscale classification and its application to process monitoring
原文传递
导出
摘要 Multiscale classification has potential advantages for monitoring industrial processes generally driven by events in different time and frequency domains.In this study, we adopt stationary wavelet transform for multiscale analysis and propose an applicable scale selection method to obtain the most discriminative scale features.Then using the multiscale features, we construct two classifiers:(1) a supported vector machine(SVM) classifier based on classification distance, and(2) a Bayes classifier based on probability estimation.For the SVM classifier, we use 4-fold cross-validation and grid-search to obtain the optimal parameters.For the Bayes classifier, we introduce dimension reduction techniques including kernel Fisher discriminant analysis(KFDA) and principal component analysis(PCA) to investigate their influence on classification accuracy.We tested the classifiers with two simulated benchmark processes:the continuous stirred tank reactor(CSTR) process and the Tennessee Eastman(TE) process.We also tested them on a real polypropylene production process.The performance comparison among the classifiers in different scales and scale combinations showed that when datasets present typical scale features, the multiscale classifier had higher classification accuracy than conventional single scale classifiers.We also found that dimension reduction can generally contribute to a better classification in our tests. Multiscale classification has potential advantages for monitoring industrial processes generally driven by events in different time and frequency domains. In this study, we adopt stationary wavelet transform for multiscale analysis and propose an applicable scale selection method to obtain the most discriminative scale features. Then using the multiscale features, we construct two classifiers: (1) a supported vector machine (SVM) classifier based on classification distance, and (2) a Bayes classifier based on probability estimation. For the SVM classifier, we use 4-fold cross-validation and grid-search to obtain the optimal parameters. For the Bayes classifier, we introduce dimension reduction techniques including kernel Fisher discriminant analysis (KFDA) and principal component analysis (PCA) to investigate their influence on classification accuracy. We tested the classifiers with two simulated benchmark processes: the continuous stirred tank reactor (CSTR) process and the Tennessee Eastman (TE) process. We also tested them on a real polypropylene production process. The performance comparison among the classifiers in different scales and scale combinations showed that when datasets present typical scale features, the multiscale classifier had higher classification accuracy than conventional single scale classifiers. We also found that dimension reduction can generally contribute to a better classification in our tests.
出处 《Journal of Zhejiang University-Science C(Computers and Electronics)》 SCIE EI 2010年第6期425-434,共10页 浙江大学学报C辑(计算机与电子(英文版)
基金 Project supported by the National Natural Science Foundation of China (No. 60574047) the National High-Tech R & D Program (863) of China (Nos. 2007AA04Z168 and 2009AA04Z154) the Research Fund for the Doctoral Program of Higher Education in China (No. 20050335018)
关键词 Multiscale analysis Stationary wavelet transform Multi-class classifier Feature extraction Process monitoring Multiscale analysis, Stationary wavelet transform, Multi-class classifier, Feature extraction, Process monitoring
  • 相关文献

参考文献1

二级参考文献1

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部