期刊文献+

一种求解TSP问题的分层免疫算法 被引量:7

Novel Hierarchical Immune Algorithm for TSP Solution
下载PDF
导出
摘要 为提高人工免疫算法求解旅行商问题的效率,构造了一种基于多子种群免疫进化的两层框架模型。在此模型的基础上提出了分层局部最优免疫优势克隆选择算法(HLOICSA)。通过对多个子种群进行低层免疫操作——局部最优免疫优势、克隆选择、基于信息熵的抗体多样性改善和高层遗传操作——选择、交叉、变异,增强优秀抗体实现亲和力成熟的机会,提高抗体群分布的多样性,在深度搜索和广度寻优之间取得了平衡。针对TSP的实验结果表明,该算法具有可靠的全局收敛性及较快的收敛速度。 In order to solve traveling salesman problem more efficiently using artificial immune algorithm, a two-floor model based on multiple sub-populations immune evolution as well as hierarchical local optimization immunodominance clonal selection algorithm(HLOICSA) was put forward. To quickly obtain the global optimum, multiple sub-populations were operated by bottom floor immune operators:local optimization immunodominance, elonal selection, antibody diversity amelioration based on locus information entropy, multiple sub-populations were also operated by top floor genetic operators:selection, crossover, mutation. Through those operators, diversity of antibody sub-population distribution and excellent antibody affinity maturation was enhanced, the balance between in the depth and breadth of the search-optimizing was acquired. Experimental results indicate that the algorithm has a remarkable quality of the global convergence reliability and convergence velocity.
出处 《计算机科学》 CSCD 北大核心 2010年第6期256-260,264,共6页 Computer Science
基金 国家自然科学基金重点项目(60634020) 国家自然科学基金项目(60874096)资助
关键词 人工免疫算法 旅行商问题 分层 局部最优免疫优势 克隆选择 Artificial immune algorithm, Traveling salesman problem, Hierarchical, Local optimization immunodominance, Clonal selection
  • 相关文献

参考文献8

  • 1Michalewicz Z, Fogel D B. How to solve It: Modern Heuristiek [M]. Berlin Heidelberg: Springer-Verlag, 2000.
  • 2Merz P, Freisleben B. Genetic local search for the TSP: New results [C]//Proc. of 1997 IEEE Int Conf on Evolutionary Computation. IEEE Neural Network Council, Evolutionary Programming Soeiety, IEEE, 1997 : 159-163.
  • 3de Castro L N,Von Zuben F J. The Clonal Selection Algorithm with Immune Systems and Their Applications[M]. CA: Morgan Kaufman Publishers, 2000.
  • 4Dasgupta D, Forrest S. Artificial immune systems in industrial applications[C] ff Proc. of the Second Int Conf on IPMM'99. Honolulu, 1999,1 : 257-267.
  • 5王磊,潘进,焦李成.免疫规划[J].计算机学报,2000,23(8):806-812. 被引量:63
  • 6戚玉涛,刘芳,焦李成.求解大规模TSP问题的自适应归约免疫算法[J].软件学报,2008,19(6):1265-1273. 被引量:19
  • 7焦李成,杜海峰,刘芳,等.免疫优化计算,学习与识别[M].北京;科学出版社,2007:93-104,133-143.
  • 8梁艳春,冯大鹏,周春光.遗传算法求解旅行商问题时的基因片段保序[J].系统工程理论与实践,2000,20(4):7-12. 被引量:37

二级参考文献5

共引文献117

同被引文献62

引证文献7

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部