期刊文献+

求解旅行Agent问题的自适应蚁群算法 被引量:4

Adaptive ant colony algorithm for traveling Agent problem
下载PDF
导出
摘要 针对现有的蚁群算法在求解旅行Agent问题中所存在的全局最优解的收敛速度不强和一致性欠佳等问题,在蚁群算法的基础上,利用算法的迭代次数来动态自适应地修改选择路径上的信息素的更新规则和信息素的挥发系数,从而使Agent在路径选择中这两方面的能力得到了提高。实验结果表明,相比现有的解决旅行Agent问题的蚁群算法,该算法在求解全局最优解的收敛速度和一致性方面具有更强的优势。 In view of the existing ant colony algorithm,this is not strong in the convergence rate and consistence of the global optimal solution for Traveling Agent Problem.By using the number of iterative algorithms to update the rules and information-volatile factor,the Agent can enhance the ability of choosing the path.Compared to the existing ant colony algorithm for Traveling Agent Problem,the result shows that the algorithm proposed in this paper is strong in the convergence rate and consistence of the global optimal solution.
作者 郑向瑜 彭勇
出处 《计算机工程与应用》 CSCD 北大核心 2010年第16期52-54,共3页 Computer Engineering and Applications
关键词 蚁群算法 路径选择 旅行Agent问题(TAP) ant colony algorithm routing Traveling Agent Problem(TAP)
  • 相关文献

参考文献8

  • 1Brewington B,Gray R,Moizumi K.Mobile agents in distributed information retrieval[C] //Kluseh M.Intelligence Information Agent.Berlin:Springer Verlag,1999:355-395.
  • 2Dorigo M,Vittorio M,Alberto C.The ant system:Optimization by a colony of cooperating Agents[J].IEEE Transactions on Systems,Man,and Cybernetics,1996,26(1):1-13.
  • 3Dorigo M,Gambardellalm.Ant colony system:A cooperative learning approach to the traveling salesman problem[J].IEEE Transactions on Evolutionary Computing,1997,1(1):53-56.
  • 4Stiiezle T,Dorigo M.A short convergence proof for a class of ant colony optimization algorithms[J].IEEE Transactions on Evolutionary Computation,2002,6(4):358-365.
  • 5Chang W A,Ramakrishna R S.A genetic algorithm for shortest path muting problem and the sizing of populations[J].IEEE Transactions on Evolutionary Computation,2002,6(6):566-579.
  • 6Dorigo M,Stiitzle T.Ant colony optimization[M].Cambridge,MA:MIT Press,2004.
  • 7王颖,谢剑英.一种自适应蚁群算法及其仿真研究[J].系统仿真学报,2002,14(1):31-33. 被引量:232
  • 8萧蕴诗,李炳宇,吴启迪.求解TSP问题的模式学习并行蚁群算法[J].控制与决策,2004,19(8):885-888. 被引量:20

二级参考文献8

  • 1Dorigo M, Maniezzo V, Colorni A. The ant system: Optimization by a colony of cooperating agents[J]. IEEE Trans on Systems, Man and Cybernetics - Part B,1996,26(1):29-41.
  • 2Dorigo M, Gambardella L. Ant colony system: A cooperative learning approach to the traveling salesman problem[J]. IEEE Trans on Evolutionary Computation,1997,1(1):53-66.
  • 3Bullnheimer B, Kotsis G, Strauss C. Parallelization strategies for the ant system[R]. Vienna: University of Vienna,1997.
  • 4Thomas Stützle, Holger Hoos. MAX-MIN ant system and local search for the traveling salesman problem[A]. Proc IEEE Int Conf on Evolutionary Computation (ICEC′97)[C]. Indianapolis,1997.309-314.
  • 5康立山 谢云 尤失勇.非数值并行算法(一)[M].北京:科学出版社,1998..
  • 6Dorigo M, Maniezzo Vittorio, Colorni Alberto. The Ant System: Optimization by a colony of cooperating agents [J]. IEEE Transactions on Systems, Man, and Cybernetics--Part B,1996, 26(1): 1-13.
  • 7Dorigo M, Gambardella L M. Ant Colony System: A Cooperative Learning Approach to the Traveling Salesman Problem [J]. IEEE Transactions on Evolutionary Computation, 1997, 1(1): 53-66.
  • 8Schoonderwoerd R, Holland O, Bruten J, Rothkrantz L. Ant-based Load Balancing in Telecommunications Networks [J]. Adaptive Behavior, 1997, 5(2): 169-207.

共引文献249

同被引文献39

引证文献4

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部