期刊文献+

遗传算法求解巡回旅行商问题的最优参数组合 被引量:2

Genetic Algorithm for Optimal Parameter Combination on Traveling Salesman Problem
下载PDF
导出
摘要 通过正交试验方法来研究影响遗传算法对巡回旅行商问题的求解能力的因素,通过极差分析法和方差分析法得出了影响因素从强到弱依次为交叉率、群体规模、选择算子、变异率;最优参数组合方案为:群体规模500,选择率1%,交叉率40%,变异率1%;结果表明,遗传算法具有较好的鲁棒性。 Orthogonal tests were designed to study parameters and their combination of traveling salesman problem(TSP).Based on the range analysis and the variance analysis,it figured out that the influential factors from primary to secondary were crossover rate,population size,selection rate and mutation rate.And the optimal case was as follows,Population Size=500,Selection Operator=2%,Crossover Rate=40%,Mutation Rate=3%.It was also verified that the genetic algorithm has good robustness.
出处 《武汉理工大学学报(信息与管理工程版)》 CAS 2010年第3期386-389,共4页 Journal of Wuhan University of Technology:Information & Management Engineering
关键词 巡回旅行商 正交试验 遗传算法 参数组合 traveling salesman problem orthogonal experimental design genetic algorithm parameters combination
  • 相关文献

参考文献5

二级参考文献13

  • 1陈魁,试验设计与分析,1996年,94页
  • 2刘勇,非数值并行计算(2)-遗传算法,1995年,22页
  • 3Guo Tao,Michalewicz Z.Evolutionary algorit hms for the TSP[C].//Eiben A E,et al.eds.Proceedings of the 5th parallel Problem Soving from Nature Conference.Lecture Notes in Computer Science 1498,Berlin:Springer,1998:803-812.
  • 4潘正君 康立山 陈毓屏.演化计算[M].北京:清华大学出版社,2000..
  • 5王小平,曹立明.遗传算法-理论.应用与软件实现[M].西安:西安交通大学出版社,2000
  • 6LitkeJ D,An improved solution to the traveling salesman problem with thousands of nodes.ACM commun.1984,27:1227~1236
  • 7Goldberg D E.Genetic algorithms in search,optimization and machine learning[M].MA:Addison Wesley,1989
  • 8陈建安,郭大伟,徐乃平,孙云芝.遗传算法理论研究综述[J].西安电子科技大学学报,1998,25(3):363-368. 被引量:36
  • 9黄焱,蒋培,王嘉松,杨敬安.基于可调变异算子求解遗传算法的欺骗问题[J].软件学报,1999,10(2):216-219. 被引量:13
  • 10梁艳春,冯大鹏,周春光.遗传算法求解旅行商问题时的基因片段保序[J].系统工程理论与实践,2000,20(4):7-12. 被引量:37

共引文献191

同被引文献21

  • 1刘清.多点正交交叉的遗传算法研究[J].南京师范大学学报(工程技术版),2005,5(2):42-45. 被引量:3
  • 2段海滨.蚁群算法原理及其应用[M].北京:科学出版社,2007:11-12.
  • 3SHI J, YAMAMOTO Y. A global optimization method for minimum maximal flow problem [ J ]. Acta Mathematica Vietnamica, 1997,22 ( 1 ) :271 - 287.
  • 4MUU L D, SHI J. Optimization methods for solving minimum maximal network flow problem [ R ]. Kyoto: Kyoto University ,2004.
  • 5YAMAMOTO Y,DAISUKE Z. Outer approximation method for the minimum maximal flow problem[J]. Journal of the Operations Research ,2007. 50( 1 ) : 15 - 30.
  • 6GOTOH J, THOAI N V, YAMAMOTO Y. Global optimization method for solving the minimum maximal flow problem [ J ]. Optimization Methods and Software, 2003,18( 1 ) :395 -415.
  • 7SHIGENO M, TAKAHASHI I, YAMAMOTO Y. Minimum maximal flow problem an optimization over the efficient set [ J ]. Journal of Global Optimization, 2003 (25) :425 -443.
  • 8Jinn-Tsong Tsai, Tung-Kuan Liu, and Jyh-Homg Chou. Hybrid Taguchi-Genetic Algorithm for Global Numerical Optimization. IEEE Trans. On Evolutionary Computation, 2004,8(4):365-377.
  • 9Leung Yiuwing. An orthogonal genetic algorithm with quantizafion for global numerical optimization. IEEE Trans on Evolutionary Computation, 2001, 5(1):41-53.
  • 10刘俊英,孙臣,王娜.深咖啡色纯棉贡缎宽幅织物的染色工艺[J].印染,2008,34(2):12-14. 被引量:3

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部