期刊文献+

非理想信道多用户数字信号的盲分离 被引量:4

Blind Separation of Non Ideal Co Channel Multi User Digital Signals Using Antenna Array
下载PDF
导出
摘要 在一个信道上传送多个用户信号,可以大大提高信道的容量.本文讨论了非理想信道多用户数字信号的盲分离问题.利用天线阵,接收信号可以看作是由N个独立信号源激励的线性传输混合系统的输出;由于信道存在码间干扰,混合矩阵的元素不是常数,而是一个线性子系统.针对这一情况,本文提出了一个新的盲分离器结构,首先将接收信号进行盲分离,然后利用基于AR模型的盲均衡器消除每一路输出信号的码间干扰,从而实现多用户信号的分离.文中给出了盲分离器的神经网络学习算法,讨论了其稳定性及收敛性.模拟结果显示分离效果是令人满意的. Co channel transmission can dramatically increase channel capacity in wireless digital communication.In this paper,a recursive neural network is proposed for separating non ideal cochannel digital signals arriving at an antenna array.The received signals of the antenna array can be thought as the outputs of a linear mixing transmission system driven by N independent sources.Since the channels are not ideal,each element of the mixing array is a linear sub system instead of a constant.To recover the transmitted signals,the recursive neural network is used to realize signal separation and channel equalization.Learning algorithm of the neural network is presented and its stability is discussed.Simulation results demonstrate its good convergence property and anti noise performance in recovering both PAM and QAM signals.
出处 《电子学报》 EI CAS CSCD 北大核心 1999年第1期41-44,共4页 Acta Electronica Sinica
关键词 盲分离 多用户数字信号 非理想信道 信道均衡 Blind separation,Co channel digital signal,Non ideal channel,Antenna array
  • 相关文献

参考文献7

二级参考文献8

共引文献5

同被引文献25

  • 1张贤达,保铮.盲信号分离[J].电子学报,2001,29(z1):1766-1771. 被引量:211
  • 2张晓冬,王桥,吴乐南.利用脊的特征进行信号盲分离[J].电子学报,2004,32(7):1156-1159. 被引量:7
  • 3孙守宇,郑君里,赵敏,张琪.不同幅度通信信号的盲源分离[J].通信学报,2004,25(6):132-138. 被引量:11
  • 4汪军,何振亚.卷积混叠信号盲分离[J].电子学报,1997,25(7):7-11. 被引量:5
  • 5Rappaport T S. Wireless Communications Principles and Practice[M]. U.S. : Prentice Hall PTR,1996.
  • 6Talwar S, Viberg M, Paulraj A. Blind separation of synchronous co-channel digital signals using an antenna array-Part 1 : algorithm [J]. IEEE Transactions on Signal Processing , 1996,44(5) :1184-1197.
  • 7Getlach D, Paulraj A. Adaptive transmitting antenna arrays with feedback [J]. IEEE Signal Processing Letter, 1994, 10 (1):150 - 152.
  • 8Mallat S. A theory for multiresolution signal decomposition: the wavelet representation[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989, 1( 11 ) : 674 -693.
  • 9Cao X R,IEEE Trans Signal Processing,1996年,44卷,562页
  • 10Aapo Hyvarinen,Juha Karhunen,Erkki Oja.Independent Component Analysis[M].Wiley,2001.203-208.

引证文献4

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部