期刊文献+

基于t-混合模型的脑MR图像白质分割 被引量:3

White matter segmentation of brain MR images based on t-mixture model
下载PDF
导出
摘要 核磁共振成像(MRI)作为临床辅助诊断和研究的重要工具,MR图像分割的准确性直接影响着后续处理的正确性和有效性。在目前的图像分割算法中,基于t-混合模型的图像分割方法因其快速和稳健性而受到重视。该方法的一般过程是先估计混合模型的参数,计算图像中每点的后验概率,然后根据贝叶斯最小错误率准则对图像进行分割。根据MR图像的特点,提出了基于t-混合模型的大脑MR图像白质分割的算法,并取得了较好的实验结果。 As Magnetic Resonance Imaging(MRI) is an important technology of clinical diagnosis and research,the accuracy of the MR image segmentation directly influences the validity of following processing.The segmentation method based on t-mixture model receives attention because of its speediness and robustness among current methods.The main procedure is outlined as follows.Firstly,the parameters of t-mixture model are estimated,and then the posterior probability of the pixels of the image is computed.At last the image is segmented according to Bayes decision rule for minimum error.By analyzing the features of MR images,the algorithm of white matter segmentation of brain MR images based on t-mixture model is proposed,and better experimental results are obtained.
出处 《计算机工程与应用》 CSCD 北大核心 2010年第17期191-193,共3页 Computer Engineering and Applications
基金 国家自然科学基金 No.60772122 安徽省教育厅自然科学研究项目(No.KJ2009A145)~~
关键词 t-混合模型 核磁共振成像(MRI)分割 白质 t-mixture model Magnetic Resonance Imaging(MRI) segmentation white matter
  • 相关文献

参考文献6

二级参考文献35

  • 1王元全,汤敏,王平安,夏德深.基于先验知识改进Snake模型的脸部特征分割[J].计算机辅助设计与图形学学报,2004,16(5):687-690. 被引量:2
  • 2Kone Van Leemput, Frederik Maes, Dirk Vandermeulen, et al. Automated Model-Based Bias Field Correction of MR Images of the Brain[J]. IEEE Trans Medical Imaging, 1999,18(10) :885-896.
  • 3Koen Van Leemput, Frederik Maes, Dirk Vandermeulen, et al. Automated Model-Based Tissue Classification of MR Images of the Brain[J ]. IEEE Trans Medical Imaging, 1999,18(10) :897-906.
  • 4Wells WM, Grimson EL, Kikinis R, et al. Adaptive segmentation of MRI data[J]. IEEE Tram Medical Imaging, 1996,15(4) : 429-442.
  • 5Guillemaud R, Brady J M. Estimating the bias field of MR images[J ]. IEEE Tram Medical Imaging, 1997,16 (3):238-251.
  • 6Held K, Kops ER, Krause BJ, et al. Markov random field segmentation of brain MR images[J ]. IEEE Trails Medical Imaging, 1997,16(6) :878-886.
  • 7Besag J. On the statistical analysis of dirty pictures (with discussion)[J ], J of Royal Statist. Soc,ser,B, 1986,48:259-302.
  • 8Geman S, Geman D. Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images[J ]. IEEE Trans Pattern Anal. Machine Intell, 1984,6(6) : 721-741.
  • 9Dempster AP, Laird NM, Bubin DB. Maximum likelihood from incomplete data via EM algorithm[J]. J of Royal Statist Soc,series B, 1977,39 (1) : 1-38.
  • 10Wu CFJ. On the convergence properties of the EM algorithm[J ]. Ann of Statistics, 1983,11:95-103.

共引文献17

同被引文献44

  • 1张志龙,鲁新平,沈振康,李吉成.基于LWT的纹理特征提取方法[J].国防科技大学学报,2005,27(3):86-91. 被引量:4
  • 2王银改.ImageJ软件在检验医学图像分析处理中的应用[J].中华检验医学杂志,2005,28(7):747-748. 被引量:23
  • 3罗诗途,张玘,罗飞路,王艳玲.基于粗糙集理论的图像分割智能决策方法[J].中国图象图形学报,2006,11(1):66-73. 被引量:9
  • 4YU Jian. Texture image segmentation based on Gaussian mixture models and gray level Co-occurrence matrix[A]. 3^rd International Symposium on Information Science and Engineering[C]. 2010,149-152.
  • 5Lee D,Seung H. Learing the parts of objects by non-neg- ative matrix factorization[J]. Nature, 1999,401 (6755) 788-791.
  • 6HUAN Ruo-hong, PAN Yun, MAO Ke-ji. SAR image target recognition based on NMF feature extraction and bayesian decision fusion [A]. 2^nd IITA International Conference on Geoscience and Remote Sensing[C]. 2010,496-499.
  • 7ZHAO Wei-zhong, MA Hui-fang, HE Qing, et al. The im- proved non-negative matrix factorization algorithm for document clustering[A]. 8^th Int. Conf. on Fuzzy Systems and Knowledge Discovery[C]. 2011,1836-1839.
  • 8Lazar C, Doncescu A. Non negative matrix factorization clustering capabilities: Application on multivariate image segmentation[A]. Int. Conf. on Complex, Intelligent and Software Intensive Systems[C]. 2009,924-929.
  • 9Haralick R M, Shanmugam K, Dinstein I. Texture features for image classification[J]. IEEE Trans. Systems Man Cy- bernet, 1973,3(6) : 610-621.
  • 10Wang L, He D C. Texture classification using texture spectrum[J]. Pattern Recognition, 1990, (23) : 905-910.

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部