期刊文献+

基于改进粒子群优化算法和模糊熵水下图像分割 被引量:2

Underwater image segmentation based on improved PSO and fuzzy entropy
下载PDF
导出
摘要 由于水下图像受到水下光照条件以及水质的一些特性影响,存在对比度低、灰度不均、目标边缘模糊等特点。传统基于最大熵原理的阈值法尽管能实现某些特定的分割任务,但是采用凸模糊集的隶属函数和穷举法存在计算复杂度高、时效性差等缺点。在传统模糊熵分割算法的基础上,重新定义了模糊熵,并根据最大熵原理,利用改进粒子群优化算法(PSO)来搜索分割阈值。通过水下图像处理试验证明,该算法对简单背景的图像分割是有效的;与传统分割方法相比,具有更强的自适应性和抗噪性。 Under the influence of lighting condition and water quality,the underwater images have low contrast,uneven gray scales and fuzzy edge of objects.Though tradition threshold methods based on maximum entropy principle could divide the image into objects and background,its complex and time-consuming computation by flange-fuzzy membership function and method of exhaustion is often an obstacle.In this paper,based on the traditional threshold methods,fuzzy entropy is redefined on given images,and the improved PSO is used to search the optimal threshold based on maximum entropy principle.The experiments prove that this novel approach is effective for simple back-ground underwater images.Comparing with the traditional methods,the new method shows better adaptability and noise restraining performance.
出处 《海洋工程》 CSCD 北大核心 2010年第2期128-133,共6页 The Ocean Engineering
基金 国家"863"计划资助项目(2008AA092301) 中国博士后科学基金资助项目(20080440838) 黑龙江省博士后资助项目 哈尔滨工程大学基础研究基金资助(HEUFT08001 HEUFT08017) 水下智能机器人技术国防科技重点实验室开放课题研究基金资助(2007001 2008003)
关键词 水下图像 图像分割 模糊熵 改进粒子优化算法 underwater image image segmentation fuzzy entropy improved PSO
  • 相关文献

参考文献10

  • 1Sezgin M,Sankur B.Survey over image thresholding techniques and quantitative performance evaluation[J].Electronic Image,2004,13(1):146-168.
  • 2朱炜,徐玉如,万磊,吕春旺.基于二维直方图和粒子群优化的边缘检测[J].系统工程与电子技术,2007,29(7):1192-1196. 被引量:7
  • 3J C Bezdek.Pattern Recognition with Fuzzy Objective Function Algorithms[M].New York:New York Plenum Press,1981.
  • 4J T Orlando,R Seara.Image segmentation by histogram thresholding using fuzzy sets[J].IEEE Trans on Image Processing,2002(11):1457-1465.
  • 5Cheng H D,Cheng J R,Li J.Threshold selection based on fuzzy c-pattern entropy approach[J].Pattern Recognition,1998,31(7):857-870.
  • 6W B Tao,J W Tian,J Liu.Image segmentation by three level thresholding based on maximum fuzzy entropy and genetic algorithm[J].Pattern Recognition Letters,2003,24:3069-3078.
  • 7朱炜,徐玉如,秦再白.基于PSO和模糊划分熵的水下图像分割[J].光学技术,2007,33(5):754-758. 被引量:7
  • 8Parsopoulos K E,Vrahatis M N.Recent approaches to global optimization problems through particle swarm optimization[J].Natural Computing,2002(1):235-306.
  • 9吕振肃,侯志荣.自适应变异的粒子群优化算法[J].电子学报,2004,32(3):416-420. 被引量:452
  • 10唐旭东,庞永杰,李晔.水下机器人运动的免疫控制方法[J].电机与控制学报,2007,11(6):676-680. 被引量:9

二级参考文献27

  • 1付冬梅,郑德玲,位耀光,周颖,鞠磊.人工免疫控制器的设计及其控制效果的仿真[J].北京科技大学学报,2004,26(4):442-445. 被引量:25
  • 2李晔,刘建成,沈明学.Dynamics model of underwater robot motion control in 6 degrees of freedom[J].Journal of Harbin Institute of Technology(New Series),2005,12(4):456-459. 被引量:18
  • 3生克伟,郑建宏.模糊熵应用于图象边缘检测[J].重庆邮电学院学报(自然科学版),1996,8(4):6-9. 被引量:4
  • 4王小平 曹立明.遗传算法-理论、算法与软件实现[M].陕西西安:西安交通大学出版社,2002.105-107.
  • 5Pun T.Entropic thresholding:a new approach[J].Computer Vision Graphics and Image Process,1981,16(2):210-239.
  • 6Kapur J N,Sahoo P K,Wong A K C.A new method for graylevel picture thresholding using the entropy of the histogram[J].Computer Vision Graphics Image Process.1985,29(3):273-285.
  • 7Abutaleb A S.Automatic thresholding of gray-level pictures using two-dimension entropy[J].Computer Vision Graphics and Image Proc.,1989,47(1):22-32.
  • 8Kennedy J,Eberhart R C.Particle swarm optimization[C]//Proc.of the IEEE International Conference on Neural Net works,1995:1942-1948.
  • 9Kennedy J.The particle swarm:social adaptation of knowledge[C]//Proc.IEEE Int Conf on Evolutionary Computation,1997:303-308.
  • 10Parsopoulos K E,Vrahatis M N.Recent approaches to global optimization problems through Particle Swarm Optimization[J].Natural Computing,2002,1:235-306.

共引文献470

同被引文献25

  • 1Jianhui Li, Ziqiang Zhu, Sihong Zeng, Wenjie Yan. A multiobjective gaussian quantum-inspired Particle swarm approach applied to electromagnetic optimization [J]. Computational Intelligence and Software Engineering (CiSE), 2010 ,pp.1-3.
  • 2Rui Xu, Ganesh K. Venayagamoorthy, Donald C. Wunsch If, Modeling of gene regulatory networks with hybrid differential evolutionary and particle swarm optimization[J].Neural Networks, 2007,266 (1-3):917- 927.
  • 3Chunqiu Wan, Jun Wang, Geng Yang and Xing Zhang, Particle swarm optimization based on gaussian mutation and its application to wind farm micro-siting[J].49th IEEE Conference on Decision and Control. 2010, (9):2227-2232.
  • 4Xu Dong, Li Ye, Tang Xudong, Pang Yongjie, Liao Yulei. Adaptive particle swarm optimization with mutation [C]. Proceedings of the 30th Chinese Control Conference, 2011.2044-2049.
  • 5S. H. Ling, II. H. C. Iu, K. Y. Chan, et al. Hybrid particle swarm optimization with wavelet mutation and its industrial appIications[J].IEEE Trans, Systems, Man, and Cybernetics, 2008, 38(3):743-763.
  • 6Roy, Kaushik, Bhattacharya, Prabir. Iris recognition using genetic algorithms and asymmetrical SVMs[J].Machine Graphics and Vision, 2010,19(1):33-62.
  • 7Vale, Z.A., Ramos, C.,Silva, M.R.,Soares, J.P., Canizes, B., Sousa, T.,Khodr, ll.M. Reactive power compensation by EPSO technique[C].IEEE International Conference on Systems Man and Cybernetics (SMC), 2010. 1512-1518.
  • 8H. Wang, Y. Liu. An improved particle swarm optimization with adaptive jumps [C]. In Proceedings of IEEE International Conference on Evolutionary Computation, 2008.392-397.
  • 9M. R. Silva, et al. Optimal dispatch with reactive power compensation by genetic algorithm[C].in Transmission and Distribution Conference and Exposition. IEEE Power and Energy Society, 2010. 1-7.
  • 10De, A. Bhattacharjee, A.K. Chanda, C.K. Maji, B. MRI Segmentation using entropy maximization and hybrid particle swarm optimization with Wavelet mutation[C]. World Congress on Information and Communication Technologies (WICT). 2011. 362-367.

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部