期刊文献+

基于小波包和EMD的异步电动机轴承故障诊断方法 被引量:3

Fault Diagnosis Method of Bearing of Asynchronous Motor Based on Wavelet-packet and EMD
下载PDF
导出
摘要 针对传统的异步电动机轴承故障诊断方法对于轴承的局部缺陷及早期故障的诊断效果不明显的问题,提出了一种采用小波包理论与EMD相结合的方式提取异步电动机轴承故障特征频率的方法。该方法先采用小波包理论对原始信号进行消噪及频带划分,接着采用EMD对小波分解重构得到的信号进行分解以获得固有内在模函数(IMF),最后将IMF经时频变换得到频谱图,根据故障特征频率得出诊断结果。实验结果证明,该方法可有效地提取出故障特征频率,并方便地判断出故障类型。 In view of the problem that diagnosis effect of traditional fault diagnosis method of bearing of asynchronous motor is bad for local defect and initial fault of bearing,the paper proposed a method of using wavelet-packet theory and EMD to extract fault characteristic frequency of bearing.The method uses wavelet-packet theory to delete noise and differentiate frequency band for original signal at first,then uses EMD to decompose the signal got by wavelet decomposition and reconstruction so as to get IMF,at last the spectrogram of each IMF is obtained through time-frequency transform and diagnosis result can be gotten according to fault characteristic frequency.The experiment result proved that the method can extract fault characteristic frequency effectively and easy to judge fault type.
作者 林选 田慕琴
出处 《工矿自动化》 2010年第6期49-53,共5页 Journal Of Mine Automation
基金 山西省科技攻关项目(2006031153-01) 山西省自然科学基金项目(2007011068)
关键词 异步电动机 轴承 故障诊断 小波包 消噪 EMD IMF asynchronous motor bearing fault diagnosis wavelet-packet de-noising EMD IMF
  • 相关文献

参考文献7

二级参考文献25

  • 1汪光森,王乘.自适应主动噪声控制系统的仿真研究[J].电声技术,2004,28(8):57-59. 被引量:7
  • 2李辉,李亦斌,邹云屏,刘飞.一种新的变步长自适应谐波检测算法[J].电力系统自动化,2005,29(2):69-73. 被引量:50
  • 3肖艳军,李建勋.基于小波变换的信号滤波在探地雷达中的应用[J].电波科学学报,2006,21(1):140-145. 被引量:13
  • 4Huang N E,Zheng S,Long S R,et al.The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis [C]// Proceedings of the Royal Society of London,Series A.London,1998:903-995.
  • 5Flandrin Patrick,Rilling Gabriel,Goncalve Paulo.Empirical mode decomposition as a filter bank [J].IEEE Signal Processing Letters,2004,11(2):112-115.
  • 6Gai Qiang,Ma Xiaojiang,Zhang Haiyong,et al.Processing time-varying signals by a new method[C]// CIE International Conference on Radar Proceedings.Beijing,2001:1011-1014.
  • 7Huang N E.Review of empirical mode decomposition[C]// Proceedings of SPIE .Olando,USA,2001:71-80.
  • 8Haloui N,Chikouche D,Bendidir M.Application of spectral parameters analysis methods for the detection of gear faults in rotating machines [J].Electrical and Computer Engineering,2002,10(1):190-194.
  • 9Zhu Z K,Feng Z H,Kong F R.Cyclostationarity analysis for gearbox condition monitoring:approaches and effectiveness [J].Mechanical Systems and Signal Processing,2005,19(3):467-482.
  • 10Capdessus C,Sidahmed M,Lacoume J L.Cyclostationary processes:application in gear faults early diagnosis [J].Mechanical Systems and Signal Processing,2000,14(3):371-385.

共引文献16

同被引文献27

  • 1张超 陈建军.EEMD方法和EMD方法抗模态混叠对比研究.振动与冲击,2010,:87-90.
  • 2陈季云,陈晓平.基于小波包分析的滚动轴承故障特征提取[J].微计算机信息,2007,23(02S):192-193. 被引量:27
  • 3张守祥,张艳丽,王永强,张岩,刘伟,王言前.综采工作面煤矸频谱特征[J].煤炭学报,2007,32(9):971-974. 被引量:27
  • 4赵玉成,陈荣华,马占国.旋转机械动力辨识与故障诊断技术[M].徐州:中国矿业大学出版社,2008.
  • 5邵晨曦,王剑,范金锋,杨明,王子才.一种自适应的EMD端点延拓方法[J].电子学报,2007,35(10):1944-1948. 被引量:71
  • 6LI Bo, CHOW Mo-Yuen, YODYIUM Tipsuwan, et al. Neural-network-based Motor Rolling Bearing Fault Diag- nosis [J]. IEEE Transactions on Industrial Electronics, 2000,45 (5) ; 1060-1068.
  • 7Miguel Delgado Prieto, Giansalvo Cirrineione, Antonio Garcia Espinosa, et al. Bearing Fault Detection by a Novel Condition-monitoring Scheme Based on Statistical-time Features and Neural Networks[J]. IEEE Transactions on Industrial Electronics, 2013,60(8) : 3398-3407.
  • 8MOURA E P, SOUTO C R, SILVA A A, et al. Evalua- tion of Principal Component Analysis and Neural Network Performance for Bearing Fault Diagnosis from Vibration Signal Processed by RS and DF Analyses[J]. Mechanical Systems and Signal Processing,2011,25(5) :1765-1772.
  • 9CASTEJON C, LARA O, GARCIA-PRADA JC. Auto- mated Diagnosis of Rolling Bearings Using MRA and Neu- ral Networks[J]. Mechanical Systems And Signal Process- ing, 2010,24 (1): 289-299.
  • 10WU Z H, HUANG N E. Ensemble Empirical Mode De- composition: A Noise Assisted Data Analysis Method[J]. Advances in Adaptive Data Analysis, 2009,1 (1) : 1-41.

引证文献3

二级引证文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部