期刊文献+

基于主动学习的半监督聚类入侵检测算法 被引量:3

Intrusion detection algorithm based on semi-supervised clustering of active learning
下载PDF
导出
摘要 针对基于监督学习入侵检测算法中面临标记大量数据的问题,提出了一种基于主动学习的半监督聚类入侵检测算法.该算法利用少量的标记数据,生成用于初始化算法的种子聚类,然后辅助聚类过程,并根据网络数据的特点,将主动学习策略应用于半监督聚类过程中,可用于检测已知和未知网络攻击.主动学习策略查询网络中未标记数据与标记数据的约束关系,对标记数据可以快速获得k个不相交的非空近邻集,很大程度上改进了算法的性能.实验结果表明了算法的可行性及有效性. Considering the problem of large labeled data in intrusion detection algorithms with supervised learning,based on active-learning semi-supervised clustering,an intrusion detection algorithm was proposed.A few limited labeled data was used to generate seed clusters in the process of initiating the algorithm;and then it was aided to clustering process.According to the characteristics of the network data,the clustering could be used to detect known and unknown attacks.Active-learning strategy searched the restriction relation between unlabeled data and labeled data in network.The labeled data could attain the k-disjointed-sets that were not null adjacent sets.Also,they could improve performance of the algorithm.The experiment results show the algorithm is feasible and effective.
作者 李永忠 胡翰
出处 《江苏科技大学学报(自然科学版)》 CAS 北大核心 2010年第2期160-163,共4页 Journal of Jiangsu University of Science and Technology:Natural Science Edition
基金 江苏省高校自然科学基金资助项目(2005DX006J)
关键词 主动学习 半监督聚类 入侵检测 active-learning semi-supervised clustering intrusion detection
  • 相关文献

参考文献10

  • 1Portnoy L,Eskin E,Stolfo S.Intrusion detection with unlabeled data using clustering[C] //Proceedings of ACM CSS Workshop on Data Mining Applied to Security.Phladelphia:[s.n.] ,2001.
  • 2Basu S,Banerjee A,Mooney R.Semi-supervised clustering by seeding[C] //Proceedings of the 19th International Conference on Machine Learning.Sydney:[s.n.] ,2002:19-26.
  • 3Abe N,Mamitsuka H.Query learning strategies using boosting and bagging[C] //Proceedings of the 15th International Conference on Machine Learning.San Francisco:Morgan Kaufmann,1998.
  • 4李永忠,孙彦,罗军生.WINEPI挖掘算法在入侵检测中的应用[J].计算机工程,2006,32(23):159-161. 被引量:11
  • 5Freund Y,Seung H,Shamir E,et al.Selective sampling using the query by committee algorithm[J].Machine Learning,1997,28 (2/3):133-168.
  • 6Lewis D D,Gale W A.A sequential algorithm for training text classifiers[C] //Proceedings of the 17th Annual International ACM-SIGIR Conference on Research and Development in Information Retrieval.New York:Springer-Verlag,1994.
  • 7宋凌,李枚毅,李孝源.一种新的半监督入侵检测算法[J].计算机应用,2008,28(7):1781-1783. 被引量:7
  • 8俞研,黄皓.一种半聚类的异常入侵检测算法[J].计算机应用,2006,26(7):1640-1642. 被引量:17
  • 9Basu S,Banerjee A,Mooney R J.Semi-supervised clustering by seeding[C] //Proceedings of 19th International Conference on Machine Learning.San Francisco:Morgan Kafmann,2002.
  • 10The UCI KDD Archive.KDD99 cup dataset[EB/OL].[2007-10-10].http://kdd.ics.uc.i edu/databases/kddcup99/kddcup99.html.

二级参考文献16

  • 1俞研,黄皓.一种半聚类的异常入侵检测算法[J].计算机应用,2006,26(7):1640-1642. 被引量:17
  • 2DENNING DE. An intrusion detection model[J]. IEEE Transactions on Software Engineering, 1987, SE-13:222 -232.
  • 3PORTNOY L, ESKIN E, STOLFO S. Intrusion detection with unlabeled data using clustering[A]. Proceedings of ACM CSS Workshop on Data Mining Applied to Security[ C].2001.
  • 4BASU S, BANERJEE A, MOONEY R. Semi-supervised clustering by seeding[ A]. Proceedings of the 19th International Conference on Machine Learning[ C]. 2002. 19 -26.
  • 5The UCI KDD Archive. KDD99 cup dataset[ EB/OL]. http://kdd.ics. uci. edu/databases/kddcup99/kddcup99.html, 1999.
  • 6LEE W, STOLFO S, MOK K.A data mining framework for building intrusion detection models[ A]. Proceedings of the 1999 IEEE Symposium on Security and Privacy[ C].1999.
  • 7Weeke L.A Data Mining for Constructing Feature and Model for Intrusion Detection System[D].Columbia:Columbia University,1999.
  • 8Weeke L,Stolfo J,Mok K W.Algorithms for Mining System Audit Data[C].Proceedings of the IEEE Symposium on Security and Privact,1999.
  • 9Peng N,Yun C,Reeves D S.Analyzing Intensive Intrusion Alerts via Correlation[C].Proc.of the 5^th International Symposium on Recent Advance in Intrusion Detection,Zurich,Switzerland,2002.
  • 10WESTON J . WATKINS C . Multi - class support vector machines [ R]. Royal Holloway, Department of Computer Science: University of London, 1998.

共引文献26

同被引文献31

  • 1彭宏,吴铁峰,张东娜.粗糙模糊模型及其在入侵检测中的应用[J].西华大学学报(自然科学版),2005,24(3):1-3. 被引量:2
  • 2吴庆涛,邵志清.入侵检测研究综述[J].计算机应用研究,2005,22(12):11-14. 被引量:19
  • 3王翼,刘兴伟.基于免疫算法的入侵检测系统[J].西华大学学报(自然科学版),2006,25(5):48-50. 被引量:2
  • 4赵悦,穆志纯.基于QBC的主动学习研究及其应用[J].计算机工程,2006,32(24):23-25. 被引量:5
  • 5Bin Zhang. Generalized K-harmonic means-boosting in unsupervised learning[R]. Hewlett-PASCard Laboratories, 2000.
  • 6Klein D, Kamvar S D, Manning C. From instance-level constraints to space level constraints: Making the most of prior knowledge in data clustering[C]// Proceedings of the Nineteenth International Conference on Machine Learning (ICML-2002). Sydney, Australia, 2002: 307-314.
  • 7The UCI KDD Archive. KDD99 cup dataset [EB/OL]. [2007-10-10]. http://kdd. its. uc. i edu/databases/ kddcup99/kddcup99. html.
  • 8Shi Zhong, Taghi M Khoshgoftaar, Naeem Seliya. Clustering-based network intrusion deteetion[J]. International Journal of Reliability, Quality, and Safety Engineering (IJRQSE), 2005,14(2) :169-187.
  • 9Pormoy L, Eskin E, Stolfo S. Intrusion detection with unlabeled data using clustering [C]// Proceedings of ACM CSS Workshop on Data Mining Applied to Security. USA: Philadelphia, 2001.
  • 10Basu S, Banerjee A, Mooney R J. Semisupervised clustering by seeding[C]//Proceedings of 19th International Conference on Machine Learning (ICML-2002). Sydney, Australia, 2002 : 19-26.

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部