期刊文献+

变时滞随机反应扩散Hopfield神经网络的稳定性(英文) 被引量:2

Stability of stochastic reaction-diffusion Hopfield neural network with time-varying delays
原文传递
导出
摘要 作者讨论了具有变时滞的随机反应扩散Hopfield神经网络的稳定性.利用Ito公式,时滞微分不等式和神经网络的特性,作者导出了关于非常值平衡解的矩指数稳定性的代数条件.最后作者给出了一个说明性实例. The main aim of this paper is to discuss moment exponential stability for a stochastic reaction- diffusion Hopfield neural network with time-varying delays. Using the Ito formula, a delays differential inequality and the characteristics of the neural network, the algebraic conditions of the moment exponential stability is derived about non-constant equilibrium solution. An example is also given for illustration.
作者 张子芳 邓瑾
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第3期451-456,共6页 Journal of Sichuan University(Natural Science Edition)
基金 国家自然科学基金(10971240,10371083) 淮海工学院引进人才科研基金资助项目(KK06004,KX07028)
关键词 变时滞 非常值平衡解 矩指数稳定性 反应扩散神经网络 time-varying delays, non-constant equilibrium solution, moment exponential stability, reaction-diffusion neural network
  • 相关文献

参考文献5

二级参考文献17

  • 1罗交晚,邹捷中,侯振挺.Comparison principle and stability criteria for stochastic differential delay equations with Markovian switching[J].Science China Mathematics,2003,46(1):129-138. 被引量:12
  • 2廖晓昕,杨叔子,程时杰,付予力.Stability of general neural networks with reaction-diffusion[J].Science in China(Series F),2001,44(5):389-395. 被引量:8
  • 3Paternoster B,Shaikhet.About stability of nonlinear stochastic difference equations[J].Appl Math Lett,2000,13:27.
  • 4Shaikhet L.Necessity and sufficient conditions of asymptotic mean square stability for stochastic linear difference equations[J].Appl Math Lett,1997,10:111.
  • 5Kolmanovskii V B,Shaikhet L.Construction of Lyapunov functionals for stochastic hereditary systems,a survey of some recent resluts[J].Mathematical and Computer Modelling,2002,36:691.
  • 6Horn R A,Johnson C R.Matrix analysis[M].New York:Cambridge University Press,1985.
  • 7Hardy G,Littlewood J E,Polya G.Inequalities[M].2nd ed.New York:Cambridge University Press,1952.
  • 8Crisci M R,Kolmanovskii V B,Russo E.Stability of difference Volterra equations:direct Lyapunov method and numerical procedure[J].Computers Math Applic,1998.36:77.
  • 9Xu D Y.Invariant and attracting sets of Volterra difference with delay[J].Comput Math Applic,2003,45:1311.
  • 10Morita,M.Associative memory with non-monotone dynamica[].Neural Networks.1993

共引文献40

同被引文献15

  • 1Ghatee M,Niksirat M.A Hopfield neural network applied to the fuzzy maximum cut problem under credibility measure[J].Information Sciences,2013,229:77.
  • 2Talavan P M,Yanez J.Parameter setting of the Hopfield networks applied to TSP[J].Neural Net- works,2002,15(3):363.
  • 3Pajares G,Guijarro M,Ribeiro A.A Hopfield neu- ral network for combining classifiers applied to tex- tured images[J].Neural Networks,2010,23:144.
  • 4Tank D W,Hopfield J J.Simple MneuralM optimiza- tion networks:an A/D converter,signal decision circuit,and a linear programming circuit[J].IEEE Trans Circuits Syst I,1986,33(5);533.
  • 5Mohamad S,Gopalsamy K,Akca H.Exponential stability of artifical neural networks with distributed delays and large impulses[J].Nonlinear Analysis:Real World Applications,2008,9:872.
  • 6Forti M,Tesi A.New conditions for global stability of neural networks with application to linear and quadratic programming problems [J].IEEE Trans Circuits Syst I,1995,42(7):354.
  • 7Zhang J Y.Global exponential stability of interval neural networks with variable delays [J].Applied Mathematics Letters,2006,19:1222.
  • 8Liu Z> Yu J,Xu D,et al,Stable analysis for neural networks:set-valued mapping method[J].Applied Mathematics and Computation,2013,220:46.
  • 9Hsu C H,Yang S Y,Yang T H,et al.Stability and bifurcation of a two-neuron network with dis- tributed time delays [J].Nonlinear Analysis:Real World Applications,2010,11:1472.
  • 10Cheng C Y,Lin K H,Shih C W.Multistability and convergence in delayed neural networks[J].Physica D,2007,225:61.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部