期刊文献+

运动模糊图像点扩展函数的参数鉴别 被引量:37

Identification of blur parameters from motion blurred images
下载PDF
导出
摘要 为了更加准确地鉴别出运动模糊图像的点扩展函数参数,提出了一种在倒谱域鉴别模糊参数的方法。该方法通过对运动模糊图像的倒谱图实施灰度变换,运用Canny边缘检测精确提取出倒谱,进而计算出运动模糊的尺度;对倒谱实施RADON变换确定运动模糊的方向。对130幅不同模糊程度的计算机仿真图像和相机实拍的图像鉴别结果表明:该方法鉴别PSF参数准确,且具有较强的鲁棒性。使用鉴别出的PSF参数,运用维纳滤波对运动模糊图像进行了复原,复原结果也证实了本方法鉴别PSF参数的有效性和准确性。 In order to identify the parameters of PSF accurately, an identification method based on cepstrum domain is presented in this paper. Gray-scale transformation and edge detection of the cepstrum are employed to extract the blur length. Radon transformation of the cepstrum is used to identify the blur direction. Experimental results covering 130 artificially blurred images and real images show that the proposed method is accurate and robust. Final restoration is achieved by using classical Wiener filter, and the restored images also validate the usability and accuracy of the proposed method.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2010年第5期1052-1057,共6页 Chinese Journal of Scientific Instrument
基金 教育部重点科研项目(No:108174) 重庆市自然基金项目(No:2008BB3169)资助项目
关键词 运动模糊 点扩展函数(PSF) 倒谱 RADON变换 motion blur point spread function (PSF) cepstrum RADON transformation
  • 相关文献

参考文献18

  • 1张航,罗大庸.图像盲复原算法研究现状及其展望[J].中国图象图形学报(A辑),2004,9(10):1145-1152. 被引量:53
  • 2LOKHANDE R, ARYA K V, GUPTA P. Identification of parameters and restoration of motion blurred images [ C ]. Dijon, France : 2006.
  • 3CANNON M. Blind deconvolution of spatially invariant image blurs with phase[ J]. Acoustics, Speech and Signal Processing, IEEE Transactions on. 1976, 24 ( 1 ) : 58-63.
  • 4TAXT T. Comparison of cepstrum-based methods for radial blind deconvolution of ultrasound images [ J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 1997, 44 (3) : 666-674.
  • 5KANG X, PENG Q, THOMAS G, et al. Blind image restoration using the cepstrum method[ C]. Ottawa, ON, Canada : 2007.
  • 6WU S, LU Z, ONG E P, et al. Blind image blur identification in cepstrum domain [ C ], Honolulu, HI, United states-2007.
  • 7SAKANO M, SUETAKE N, UCHINO E. Robust identification of motion blur parameters by using angles of gradient vectors[ C]. 2006.
  • 8TANAKA M, YONEJI K, OKUTOMI M. Motion blur parameter identification from a linearly blurred image [ C ]. 2007.
  • 9YITZHAKY Y, KOPEIKA N S. Identification of blur parameters from motion blurred images [ J]. Graphical Models and Image Processing, 1997, 59(5) : 310-320.
  • 10ARASHLOO S R, AHMADYFARD A. Fine estimation of blur parameters for image restoration [ C ]. Wales, United Kingdom : 2007.

二级参考文献72

  • 1Jordi Sole, Anisse Taleb, Christian Jutten. Parametric Approach to Blind Deconvolution of Nonlinear Channels[A]. In:ESANN'2000-European Symposium on Artificial Neural Networks[C], Bruges, Belgium, 2000 : 26 - 28.
  • 2Haritopoulos Michel, Yin Hujun, Allinson M. Image denoising using self-organizing map-based nonlinear independent component analysis[J]. Neural Networks,2002,15(8-9):1085-1098.
  • 3Lun Daniel P K, Hsung T C, Shen T W. Orthogonal discrete periodic Radon transform. Part I: Theory and realization [J].Signal Processing, 2003,83 (5) : 941 - 955.
  • 4Lun Daniel P K, Hsung T C, Shen T W. Orthogonal discrete periodic Radon transform. Part I : applications [J]. Signal Processing, 2003,83(5) : 957-971.
  • 5Krell Gerald, Herzog Andreas, Michaelis Bernd. An artificial nervous network for real-time image restoration[A]. In:IEEE Instrumentation and Measurement Technology Conference[C],Brussels, Belgium, 1996.
  • 6Lagendijk R L, Tekalp A M, Biemond J. Maximum likelihood image and blur identification: A unifying approaeh[J]. Optical Engineering, 1990,29(5) :422-435.
  • 7Reeves S, Mersereau R. Blur identification by the method of generalized cross-validation [J]. IEEE Transactions on Image Processing, 1992,1(3) : 301 - 311.
  • 8Choand C M, Don H S. Blur identification and image restoration using a multilayer neural network[A]. In: IEEE International Joint Conference on Neural Networks [C], Singaproe, 1991,3:2558-2563.
  • 9Qidwai. Uand Chen C-H. Blind Image Restor-ation for Ultrasonic C-Scan Using Constrained 2D-HOS [A]. In: IEEE International Conference on Acoustics Speech and Signal Processing[C], Salt Lake, UT, USA, 2001,6:3405-3408.
  • 10Slock D T M, Papadias C B. Further results on blind identification and equalization of multiple FIR channels[A]. In:Proceedings of International Conference on Acoustics, Speech and Signal Processing[C], Detroit MI USA, 1995 : 1964-1967.

共引文献54

同被引文献278

引证文献37

二级引证文献184

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部