期刊文献+

P_(2r,b)图的优美性 被引量:10

THE GRACEFULNESS OF GRAPH P_(2r,b)
原文传递
导出
摘要 Kathiresan KM证实P_(2r,2m-1)(r,m皆为任意正整数)是优美的且猜想:除了(a,b)=(2r-1,4m-2)外,所有的P_(a,b)都是优美的.杨元生证实P_(2r+1,2m+1)是优美的,并且证实了当r≤7,r=9时的P_(2r,2m)是优美的.严谦泰证实r为奇数时P_(2r,2m)是优美的.采用回溯和分支限界算法搜索到了一个适合于所有P_(2r,b)图(r,b皆为任意正整数)的优美标号,用函数构造法提取其规律并从数学的严格性进行了证明,使得所有的P_(2r,b)图(r,b皆为任意正整数)的优美性得到了证实. Kathiresan K M showed that P2r,2m-1 is graceful and conjectured that Pa,b is graceful except when a = 2r - 1 and b = 4m - 2. Professor Yang Yuansheng showed that g2r+l,2m+l and P2r,2m (r≤7, r = 9) are graceful. Yan Qiantai pointed out that P2r,2m are graceful when r is odd. In this paper, a graceful label adapting to all the P2r,b is searched by trace and branch bound method. So the gracefulness of P2r, b for any positive integers r and b is proved.
作者 容青 熊冬春
出处 《系统科学与数学》 CSCD 北大核心 2010年第5期703-709,共7页 Journal of Systems Science and Mathematical Sciences
基金 广西教育厅科研项目(200807LX431) 广西师范学院青年科研基金项目(0709B006)资助课题
关键词 优美图 顶点标号 边标号 Graceful graph, vertex labeling, edge labeling.
  • 相关文献

参考文献6

  • 1Ringel G. Problem 25 in theory of graphs and its application. Proc. Symposium Smolenice, Prague, 1963.
  • 2Rosa A. On certain valuations of the vertices of a graph: Theory of Graphs. Proc. Internet Syspos, Rome, 1966.
  • 3Sheppard D A. The factorial representation of major balanced labelled graphs. Discrete Math., 1976, 15: 379-388.
  • 4Kathiesan K M. Two classes of graceful graphs. Ars Combinatorial, 2000, 22: 491-504.
  • 5杨元生,容青,徐喜荣.一类优美图[J].Journal of Mathematical Research and Exposition,2004,24(3):520-524. 被引量:14
  • 6严谦泰.图P_(2r,2m)的优美标号[J].系统科学与数学,2006,26(5):513-517. 被引量:23

二级参考文献12

  • 1杨元生,容青,徐喜荣.一类优美图[J].Journal of Mathematical Research and Exposition,2004,24(3):520-524. 被引量:14
  • 2RINGEL G. Problem 25 in theory of graphs and its application [J]. Proc. Symposium Smolenice,1963, 162.
  • 3ROSA A. On certain Valuations of the Vertices of a Graph [M]. Theory of Graphs, Proc. Internat,Sympos, Rome. , 1966, 349-355.
  • 4GOLOMB S W. How to Number a Graph [M]. Graph Theory and Computing, Academic Press, New York, 1972, 23-37.
  • 5GALLIAN J A. A dynamic survery of graph labeling [J]. The electronic journal of combinatorics,2000, 6.
  • 6KATHIESAN K M. Two classes of graceful graphs [J]. Ars Combinatoria, 2000, 55.. 129-132.
  • 7Gallian J A. A dynamic survery of graph labeling. The Electronic Journal of Conbinatorics, 2000,6.
  • 8Ma Kejie. Graceful Graphs. Beijing, Peking University Press, 1991, 10.
  • 9Ringel G. Problem 25 in theory of graphs and its application. Proc. Symposium Smolenice, 1963,162.
  • 10Rose A. On Certain Valuations of the Vertices of a Graph. Theory of Graphs, Proc. Internet,Syspos, Rome, 1966, 349-355.

共引文献32

同被引文献52

  • 1魏丽侠,贾治中.非连通图G_1uG_2及G_1uG_2uK_2的优美性[J].应用数学学报,2005,28(4):689-694. 被引量:26
  • 2高振滨.毛毛虫树标号的讨论[J].黑龙江大学自然科学学报,2006,23(3):311-313. 被引量:3
  • 3刘育兴.图K_(m,n)∪K_(p,q)的k优美性[J].大学数学,2007,23(1):90-93. 被引量:5
  • 4Gallian A. A dynamic survey of graph labeling[J]. The Electronic Journal of Combinatorics, 2000, 12: 1-95.
  • 5Kathiesan K M. Two classes of graceful graphs[J]. Ars Combinatoria, 2000, 55: 129-132.
  • 6Gall ian A. A dynamic survey of graph labeling[J]. The Electronic Journal of Combinatorics, 2000, 12: 1-95.
  • 7Kotzig A, Rosa A. Magic valuations of linite graphs[J]. Canad Math Bull, 1970, 13: 451-461.
  • 8A. Kotzig and A. Rosa. Magic valuations of finite graphs [ J ]. Canad. Math. Bull, 1970 ( 13 ) :451-461.
  • 9H. Enomoto, A. S. Llado, T. Nakamigawa. Super edge-magic graphs[ J]. SUT J. Math, 1998 (34) :105-109.
  • 10R. M. Figueroa-Centeno, R. Ichishima and F. A. Muntaner-Batle, The place of super edge-magic labelings among other classes of labelings [ J ]. Discrete Mathematics, 2001 (231) : 153-168.

引证文献10

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部