期刊文献+

基于双层分类器入侵检测算法

Intrusion Detection Algorithm Based on bi-Level Classifiers
下载PDF
导出
摘要 入侵检测实质上是分类问题,即将正常数据同入侵行为分开。在本文中,提出一种双层入侵检测算法,算法的一层是基于Boosting的入侵检测算法,二层是SVM算法。KDDCUP99数据集用于实验中,结果表明,基于这种结构的双层入侵检测算法分类精度和泛化能力都好于单个神经网络和常用神经网络集成方法。 Intrusion detection can be essentially regarded as a classification problem, namely, distinguishing normal profiles.from intrusive behaviors. In this paper, an approach to network intrusion detection with a two -layered architecture is proposed, which is a algorithm based on boosting in the first level and SVM in the second level. KDD CUP99 data set is used in these experiments to demonstrate that the classification accuracy and the generalization ability of bi - level intrusion detection algorithm with the architecture is better than that of the single neural network and commonly - used neural network ensemble methods.
作者 姜伟 杨炳儒
出处 《微计算机应用》 2010年第6期20-24,共5页 Microcomputer Applications
基金 国家自然科学基金项目(60675030)资助
关键词 入侵检测 集成学习 弱分类器 支持向量机 Intrusion detection, ensemble learning, weak classifier, SVM
  • 相关文献

参考文献6

二级参考文献21

  • 1Lang K J,Proceedings of the 1988Connectionist Models Summer School,1989年,52页
  • 2Denning D E. An intrusion detection model[J]. IEEE Transactions on Software Engineering, 1987,13(2):222-232
  • 3Vapnik V N. The nature of statistical learning theory[M]. New York: Springer-Verlag,1995.
  • 4Hsu C W, Lin C J. A Comparison of methods for multi-class support vector machines[J]. IEEE Transactions on Neural Networks, 2002, 13 (2): 110-119.
  • 5Wilson D R, Martinez T R. Improved heterogeneous distance functions[J]. Journal of Artificial Intelligence Research, 1997(6): 1-34.
  • 6Amari S, Wu S. Improving support vector machine classifiers by modifying kernel functions[J]. Neural Networks, 1999, 12(6):783-789.
  • 7School of information and computer science university of California. KDD cup 1999 data[EB/OL]. http://kdd.ics.uci.edu/databases/kddcup99/kddcup.html,1999-10-28/2004-3-21.
  • 8Lee W, Stolfo S J, Mok K W. A data mining framework for building intrusion detection models[A]. The 1999 IEEE Symposium on Security and Privacy, Berkeley, USA, 1999.
  • 9Chang C C, Lin C J. LIBSVM-a library for support vector machines[EB/OL]. http://www.csie.ntu.edu.tw/-cjlin/libsvm/, 2004-03-31/2004-05-25.
  • 10Ambwani T. Multi-class support vector machine implementation to intrusion detection[A]. The 2003 IEEE International Joint Conference on Neural Networks, Portland, USA, 2003.

共引文献84

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部