期刊文献+

基于K-means聚类算法的校园网用户行为分析研究 被引量:15

Research of Customer Behavior Analysis In Campus Network Based on K-means Clustering Algorithm
下载PDF
导出
摘要 利用数据挖掘相关技术,针对后台计费服务器的数据库,基于K-means算法以校园网用户行为特征为对象来进行聚类分析,提出了几个校园网用户行为分析的模型。此类模型为校园网管理者在制定有效管理策略,满足校园网用户个性化需求方面提供理论依据。 The paper presents some models for customer behavior analysis of campus network based on data mining technology, which is constructed by clustering analysis of background charging server database with behavior characteristic of high - school customers based on K- means algorithm. The model can provide good theoretical support for network administrators to design effective management strategy to meet individual requirements of high- school customers.
出处 《微计算机应用》 2010年第6期74-80,共7页 Microcomputer Applications
基金 江苏省农机局科研启动基金(GXS06016)
关键词 用户行为 聚类 K—means data - mining, customer behavior, clustering algorithm, K - means
  • 相关文献

参考文献5

二级参考文献38

  • 1刘翰宇,肖明忠,代亚非,李晓明.活跃型用户对P2P文件共享系统可用性的影响[J].软件学报,2006,17(10):2087-2095. 被引量:5
  • 2Number of Hosts advertised in the DNS.Internet Domain Survey,http://www.isc.org/ds/WWW-200207/index.html, 2002-07
  • 3Walter Willinger,Vern Paxson. Where Mathematics Meets the Internet[J].Notices of the AMS, 1998; 45 (8): 961~970
  • 4The CAIDA Web Site.http://www.caida.org/
  • 5K Claffy,G Polyzos ,H Braun. Application of Sampling Methodologies to Network Traffic Characterization[C].In:Proceedings of ACM SIGCOMM 93,1993-05
  • 6Duffield N G,Grossglauser M.Trajectory sampling for direct traffic observation, Networking[J].IEEE/ACM Transactions on, 2001; 9 ( 3 ):280~292
  • 7Tanja Zseby:Deployment of Sampling Methods for SLA Validation with Non-Intrusive Measurements[C].In:Proceedings of Passive and Active Measurement Workshop (PAM 2002), Fort Collins, CO, USA,2002: 25~26
  • 8N G Duffield,C Lund,M Thorup. Charging from sampled network usage[C].In :ACM SIGCOMM Internet Measurement Workshop 2001 ,San Francisco, CA, 2001
  • 9Packet Sampling ( psamp ) .http://www.ietf. org/html.charters/psampcharter.html, 2002-12
  • 10IP Performance Metrics(ippm).http://www.ietf. org/html.charters/ippmcharter.html

共引文献27

同被引文献95

引证文献15

二级引证文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部