期刊文献+

基于数据场的大规模本体映射 被引量:18

Data Field Based Large Scale Ontology Mapping
下载PDF
导出
摘要 针对已有的本体映射方法在处理大规模本体映射任务时效率和有效性较低的问题,文中提出了一个基于数据场的本体映射算法.该算法首先使用高效的相似度算法,建立本体中元素对另一本体的初始相关度;然后,利用数据场势函数引入周围本体元素对当前元素的影响,修正初始相关度,并最终确定本体间的相关子本体;最后,利用针对性的方法对上述相关子本体进行更有效的映射.实验结果表明,该算法可以在提高映射结果质量的同时保证较高的映射效率. As the cornerstone of ontology based data integration,data exchange and metadata management,ontology mapping,aiming to obtain semantic correspondences between two ontologies,has attracted wide attentions of researchers in community of the Semantic Web.However when getting the alignments between two large-scale ontologies,the existed mapping methods are not very effective and efficient due to neglecting of relevant sub-ontologies in those two ontologies.For addressing this important issue,in this paper,a data field based ontology mapping approach is proposed to improve the effectiveness and the efficiency of large scale ontology mapping tasks.At first,this approach employs a light weight similarity computing method to collect the initial relevance values between one ontology's elements to another ontology.Then,the potential functions of a data field are taken into account to revise the relevance of an ontology element according to its surroundings.Finally,the relevant sub-ontologies are found and extracted,and a fine-grained alignment approach is used to mapping between the extracted ontologies for better results.The experiments show that the proposed approach is able to effectively deal with the large scale ontology mapping issue with the satisfactory efficiency.
出处 《计算机学报》 EI CSCD 北大核心 2010年第6期955-965,共11页 Chinese Journal of Computers
基金 国家自然科学基金(60973102 60703059) 国家"九七三"重点基础研究发展规划项目基金(2007CB310803) 国家"八六三"高技术研究发展计划项目基金(2009AA01Z138)资助~~
关键词 数据场 势函数 本体 本体映射 语义WEB data field potential function ontology ontology mapping Semantic Web
  • 相关文献

参考文献15

  • 1Cohen W, Ravikumar P, Fienberg S. A comparison of string distance metrics for name-matching tasks//Proceedings of the IJCAI Workshop on Information Integration on the Web (IIWeb). Aeapulco, Mexico, 2003: 73-78.
  • 2Budanitsky A, Hirst G. Evaluating WordNet based measures of lexical semantic relatedness. Computational Linguistics, 2006, 32(1): 13-47.
  • 3Do H-H, Rahm E. COMA A system for flexible combination of schema matching approaches//Proceedings of the 28th International Conference on Very Large Data Bases(VLDB). Hong Kong, China, 2002:610- 621.
  • 4Melnik S, Garcia-Molina H, Rahm E. Similarity flooding: A versatile graph matching algorithm and its application to schema Matching//Proceedings of the 18th International Conference of Data Engineering (ICDE). San Jose, California, 2002. 117-128.
  • 5Isaac A, Meij L, Schlobach S, Wang S. An empirical study of instance based ontology matching//Proceedings of the 6th International Semantic Web Conference and the 2nd Asian Semantic Web Conference (ISWC/ASWC). Busan, Korea, 2007, 253 -266.
  • 6Wang S, Englebienne G, Schlobach S. Learning concept mappings from instance similarity//Proceedings of the 7th International Semantic Web Conference (ISWC). Karlsruhe, Germany, 2008:339- 355.
  • 7Udrea O, Getoor L, Miller R. Leveraging data and structure in ontology integration//Proceedings of the 26th International Conference on Management of Data (SIGMOD). Beijing, China, 2007:449-460.
  • 8Aleksovski Z, Klein M, Kate W, Harmelen F. Matching unstructured vocabularies using a background ontology//Proceedings of the 15th International Conference on Knowledge Engineering and Knowledge Management (EKAW), Podebrady, Czech, 2006:182-197.
  • 9Gligorov R, A|eksovski Z, Kate W, Harmelen F. Using Google distance to weight approximate ontology matches// Proceedings of the 16th International World Wide Web Conference(WWW). Beijing, China, 2007:767-776.
  • 10Li J, Tang J, Li Y, Luo Q. RiMOM: A synamic multistrategy ontology alignment framework. IEEE Transactions on Knowledge and Data Engineering (TKDE), 2009, 21 (8) : 1218-1232.

二级参考文献65

  • 1Jain A K,Murty M N,Flynn P J.Data clustering:a review[J].ACM Computing Surveys,1999,31(3):264-323.
  • 2Za(i)ane O R,Foss A,Lee C H,Wang W.On data clustering analysis:scalability,constraints and validation[A].Proceedings of the Sixth Pacific Asia Conference on Knowledge Discovery and Data Mining[C].Taiwan:Springer-Verlag,2002.28-39.
  • 3Zhang T,Ramakrishnman R,Linvy M.BIRCH:an efficient method for very large databases[A].Proceedings of ACM SIGMOD International Conference on Manangement of Data[C].Canada:ACM Press,1996.103-114.
  • 4Guha S,Rastogi R,Shim K.CURE:an efficient clustering algorithm for large databases[A].Proceedings of the 1998 ACM SIGMOD International Conference on Management of Data[C].Seattle:ACM Press,1998.73-84.
  • 5George K,Han E H,Kumar V.CHAMELEON:a hierarchical clustering algorithm using dynamic modeling[J].IEEE computer,1999,27(3):329-341.
  • 6Wright W E.Gravitational clustering[J].Pattern Recognition,1977,9(3):151-166.
  • 7Oyang Y J,Chen C Y,Yang T W.A study on the hierarchical data clustering algorithm based on gravity theory[A].The 5th European Conference on Principles and Practive of Knowledge Discovery in Databases(PKDD2001)[C].Freiburg:Springer-Verlag,2001.350-361.
  • 8Landau L D,Lifshitz E M.The classical theory of fields[M].Beijing:Beijing World Publishing Ltd,1999.
  • 9淦文燕.聚类-数据挖掘中的基础问题研究[D].南京:解放军理工大学,2003.
  • 10Berners-Lee T.,Fischetti M.,Dertouzos M.L..Weaving the web:The original design and ultimate destiny of the World Wide Web,Harper,San Francisco,USA,1999

共引文献179

同被引文献156

引证文献18

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部