期刊文献+

基于二维复判别分析的人脸识别研究 被引量:2

Study on face recognition based on two-dimensional combined complex discriminant analysis
下载PDF
导出
摘要 为了提高人脸正确识别率和效率,在行列方向的二维线性判别分析((2D)2LDA)基础之上,提出了一种二维复判别分析(2DCCDA)的人脸识别方法。该方法通过(2D)2LDA并行提取到的行和列特征矩阵,利用复二维鉴别式分析(C2DLDA)将行和列特征融合成复数特征矩阵,从复数特征矩阵中提取出最具分类能力的系数组成特征向量。相比较二维线性判别分析(2DLDA)和(2D)2LDA方法,2DCCDA需要更少的特征系数来表征一幅图像,并且正确识别率也相应提高。 To increase the accurate recognition rate and the efficiency of face recognition,on the basis of two-dimensional linear discriminant analysis(2DLDA) along row and column directions((2D)2LDA),a face recognition method is proposed,based on two-dimensional combined complex discriminant analysis(2DCCDA).In this method,firstly row and column feature matrixes are extracted by(2D)2LDA.Secondly,both feature matrixes are integrated into a complex feature matrix using complex version of 2DLDA(C2DLDA).In the end,some components are picked out from the complex feature matrix to form a feature vector according to their discriminative abilities.Compared with 2DLDA and(2D)2LDA methods,the proposed 2DCCDA can present an image with less feature components and the accurate recognition rate is improved.
出处 《计算机工程与设计》 CSCD 北大核心 2010年第11期2514-2518,共5页 Computer Engineering and Design
基金 广东省教育部科技部企业科技特派员行动计划专项基金项目(2009B090600034) 广东省科技计划基金项目(2009B060700124) 广州市教育科学"十一五"规划基金项目(07B171)
关键词 人脸识别 主成份分析 线性判别分析 复二维鉴别式分析 二维复判别分析 face recognition principal component analysis(PCA) two-dimensional linear discriminant analysis complex version of 2DLDA two-dimensional combined complex discriminant analysis
  • 相关文献

参考文献9

  • 1Lu Chong, Liu Wanquan, Liu Xiaodong, et al. Double sides 2DP.CA for face recognition [J]. ICIC 2008, LNCS 5226,2008: 446-459.
  • 2Yang J,Zhang D,Frangi AF, et al.Two- dimensional PCA: a new approach to appearance-based face representation and recognition [J]. IEEE Trans Pattern Anal Mach Intell, 2004,26 (1): 131-137.
  • 3Li Ming,Yuan Baozhong.2D-LDA: a statistical linear discriminant analysis for image matrix[J].Pattern Recognition Lett,2005, 26(5):527-532.
  • 4Zheng WeiShi,Lai JH,Li Stan Z. 1D-LDA vs. 2D-LDA: When is vector-based linear discriminant analysis better than matrixbased[J].Pattem Recognition,2008,41 (7):2156-2172.
  • 5Noushath S,Hemantha Kumar G,Shivakumara P. (2D)^2LDA: An efficient approach for face recognition[J].Pattem Recognition, 2006,39(7): 1396-1400.
  • 6Yu Wangxin,Wang Zhizhong,Chen Weiting.A new framework to combine vertical and horizontal information for face recognition [J].Neurocomputing, 2009,72(4-6): 1084-1091.
  • 7Yang Jian,Yang Jingyu,Zhang David,et al. Feature fusion: parallel strategy vs serial strategy[J]. Pattern Recognition,2003,36(6): 1369-1381.
  • 8Yang Jian,Zhang David,Yong X,et al.Two-dimensional discriminant transform for face recognition [J]. Pattern Recognition, 2005,38(7): 1125 - 1129.
  • 9Tan X,Chen S,Zhou Z H,et al.Robust face recognition from a single training image per person with kernel-based SOM-face [C].Proceedings of the 1st International Symposium on Neural Networks, LNCS 3173,2004:858-863.

同被引文献15

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部