期刊文献+

短生命周期产品的销量预测模型研究 被引量:3

Study on sales forecasting models of short lifecycle products
下载PDF
导出
摘要 为了提高短生命周期产品在整个生命周期各个阶段的销量预测能力,在前人研究的基础上,基于模糊理论提出了结合多元线性回归和模糊神经网络的组合预测方法模型。该模型综合考虑了生命周期各阶段的特点,首先对产品的生命周期进行了分析和分段,指出单一方法和传统方法的不足之处。在此基础上针对以上问题设计总体预测方案,不仅可以解决前期历史数据缺乏问题,而且可以解决中后期复杂的非线性预测问题,从而使销量预测模型更通用和更精确。实验结果表明了该模型的有效性。 In order to improve the forecasting capability of sales in various stages of entire lifecycle,based on fuzzy set theory,a method which combined multiple linear regression and fuzzy neural network forecasting methods is proposed.First of all,this model analyzed and separated the product lifecycle based on the character of every subsection,and proposed the insufficiency of single and traditional method.Second,our model could solve not only the lack of historical data problems in early commodity market,but also the complex non-linear prediction problems.So that the sales forecasting model is more general and accurate and the validity of the model is verified by experiment.
出处 《计算机工程与设计》 CSCD 北大核心 2010年第11期2527-2530,共4页 Computer Engineering and Design
关键词 生命周期 模糊集理论 线性回归 模糊神经网络 销量预测 lifecycle fuzzy set theory linear regression fuzzy neural network sales forecasting
  • 相关文献

参考文献8

  • 1Donald Waters.Inventory control and management[M].2nd ed. John Wiley & Sons,2005.
  • 2Doganis P, Alexandridis A, Patrinos P, et al. Time series sales forecasting for short shelf-life food products based on artificial neural networks and evolutionary computing[J].Journal of Food Engineering,2006,75(2): 196-204.
  • 3陈忠,朱建伟.数值计算方法[M].北京:石油工业出版社,2003.
  • 4Liu Yihang,Liu Lieli.Sales forecasting through fuzzy neural networks [C]. International Conference on Electronic Computer Technology,2009:511-515.
  • 5Chang P C, Wang Y W. Fuzzy delphi and back-propagation model for sales forecasting in PCB industry[J].Expert Systems with Applications,2006,30:715-726.
  • 6沈淑娟,姜建国,曹建春.基于模糊聚类神经网络的镜头突变检测算法[J].计算机工程与设计,2004,25(9):1612-1614. 被引量:4
  • 7徐贤浩,宋奇志.短生命周期产品的预测方法[J].统计与决策,2006,22(24):161-163. 被引量:9
  • 8史旭明,金龙,主毅.基于粗糙集的模糊神经网络降水预报模型研究[J].计算机仿真,2009,26(1):178-180. 被引量:10

二级参考文献29

共引文献24

同被引文献60

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部