期刊文献+

基于IGA算法优化的RBF神经网络应用 被引量:6

Application of RBF Neural Network Based on Improved Genetic Algorithm
下载PDF
导出
摘要 提出了一种基于改进遗传算法(Improved Genetic Algorithm,IGA)优化的径向基函数(RBF)神经网络,将实数编码的自适应交叉和变异操作的遗传算法与梯度下降法混合交互运算,作为RBF网络的学习算法,并应用于非线性函数的逼近和导弹故障模式的识别问题。仿真结果表明,基于IGA算法的RBF神经网络不仅结构简单,而且具有较好的网络泛化性能。 In this paper,a radial basis function (RBF) neural network based on improved genetic algorithm (IGA) was proposed. A hybrid learning algorithm that incorporated the real-coded genetic algorithm with adaptive crossover and mutation into the gradient-dropping algorithm was presented to optimize the RBF neural network. And the simulation experiments about approximation problem of nonlinear function and pattern recognition of missile's failure were done. The simulation results show that the RBF neural network based on IGA not only has the advantages of simple structure and fast learning,but also has better generalization performance.
出处 《海军航空工程学院学报》 2010年第3期271-275,共5页 Journal of Naval Aeronautical and Astronautical University
关键词 RBF神经网络 梯度下降法 遗传算法 自适应 RBF neural network gradient-dropping algorithm genetic algorithm adaptation
  • 相关文献

参考文献7

  • 1HONGMEI LIU, PINGECHAO OUYANG, SHAOPING WANG. Fault detection based on RBF neural network in a hydraulic position servo system[C]//The 6th World Congress on Control and Automation. Dalian, China, 2006:5708-5712.
  • 2ZHIHONG QIE, XINMIAO WU, HITOSHI FURUTA, et al. The method of calculating hysteresis time of piezometrie tube for earth-rock dam based on GA-RBF[C]//The 6th World Congress on Control and Automation. Dalian, China, 2006:8523-8527.
  • 3尹靓,李连,刘东鑫.基于自适应遗传算法的航迹关联模型[J].海军航空工程学院学报,2009,24(3):272-276. 被引量:5
  • 4高玮.改进的快速遗传算法及其性能研究[J].系统工程与电子技术,2003,25(11):1427-1430. 被引量:41
  • 5SRINIVAS M, PATNAIK L M. Adaptive probabilities of crossover and mutation in genetic algorithms[J]. IEEE Trans. On SMC, 1994,24(4):656-667.
  • 6CHEN S, CHNG E S, ALKADHIMI K. Regularized orthogonal least squares algorithm for constructing radial basis function networks[J]. International Journal of Control, 1996,64(5):829-837.
  • 7胡昌华,张军波,李学锋.一种基于小波和人工神经网络的故障检测与诊断方法[J].航天控制,2000,18(2):64-71. 被引量:12

二级参考文献18

  • 1田宝国,何友.人工神经网络在目标识别和分类中的应用[J].海军航空工程学院学报,2005,20(4):401-404. 被引量:15
  • 2田宝国,何友,杨日杰.基于遗传算法的分布式多传感器航迹关联算法[J].火力与指挥控制,2005,30(5):44-47. 被引量:6
  • 3何友,彭应宁,陆大.多传感器数据融合模型综述[J].清华大学学报(自然科学版),1996,36(9):14-20. 被引量:85
  • 4SINGER R A,KANYUCK A T.Computer Control of Multiple Site Track Data[J].Automation.1971,7(3):455-463.
  • 5DITZLER W R.A Demonstration of Multisensor Tracking[C]//Proceedings of the 1987 Tri-Service Data Fusion Symposium.1 987:303-311.
  • 6BAR-SHALOM Y,FORTMANN T E.Tracking and Association[M].New York:Academic Press,1988.
  • 7KOSOKA M.A Track Correlation Algorithm for Multisensor Intergration[C]//Proceeding of the IEEE /AIAA 5th Digital Avioics System Conf.1983.
  • 8CHANG C B,YOUENS L C.Measurement Correlation for Multiple Sensor Tracking in a Dense Target Enviroment[J].IEEE Trans,1 982,AC-27(6):1 250-1252.
  • 9HOLLAND J H.Adaptation in Nature and Artificial Systems[M].The University of Michigan Press,MIT Press,1 992.
  • 10SRINIVAS M,PATNAIK L M.Adaptive probabilities of crossover and mutation in genetic algorithms[J].IEEE Trans.on Syst.,Man and Cybern.,1 994,24(4):656.667.

共引文献55

同被引文献66

引证文献6

二级引证文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部