期刊文献+

Banach空间中增生算子的粘滞逼近问题 被引量:4

Viscosity Approximation for Accretive Operators in Banach Spaces
下载PDF
导出
摘要 在实的Banach空间中设计了一种新的关于Meir-Keeler压缩映像的粘滞型迭代算法,并利用所提出的算法证明了增生算子零点的强收敛定理.作为应用,在实的Hilbert空间中研究了寻找真下半连续凸泛函的极小值点问题. In real Banach spaces,many new viscosity-type iterative algorithms with Meir-Keeler contractions are proposed.By using the proposed algorithms,strong convergence theorems of zeros for accretive operator are proved.As an application,the problem of finding a minimizer of a proper lower semicontinuous convex function is considered in real Hilbert spaces.
出处 《西南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第3期33-36,共4页 Journal of Southwest China Normal University(Natural Science Edition)
基金 国家自然科学基金资助项目(10771050)
关键词 增生算子 粘滞逼近 零点 Meir-Keeler压缩映像 accretive operator viscosity approximation zero Meir-Keeler contraction
  • 相关文献

参考文献8

二级参考文献21

共引文献27

同被引文献25

  • 1Kohsaka F,Takahashi W. Fixed point theorems for a class of nonlinear mappings related to maximal mono- tone operators in Banach spaees[J]. Arch Math ,2008, 91 : 166-177.
  • 2Iemoto S, Takahashi W. Approximating common fixed points of nonexpansive mappings and nonspreading mappings in a Hilbert space[J]. Nonlinear Anal, 2009,71 : 2082-2089.
  • 3Moudafi A. Krasnoselski-Mann iteration for hierarchi- cal fixed point problems[J]. Inverse Problems, 2007, 23 : 1635-1640.
  • 4Opial Z. Weak convergence of the sequence of succes- sive approximations for nonexpansive mappings [J]. Bull Amer Math Soc, 1967,73 : 591-597.
  • 5Reich S. Weak convergence theorems for nonexpansive mappings in Banach spaces[J]. J Math Anal Appl,1979,67 : 2741-276.
  • 6Takahashi W, Tamura T. Convergence theorems for a pair of nonexpansive mappings[J]. J Convex Anal, 1998,5:45-56.
  • 7Tan K K, Xu H K. Approximating fixed points of nonexpansive mappings by the Ishikawa iteration process[J]. J Math Anal Appl, 1993,178 : 301-308.
  • 8Aoyama K, Kohsaka F, Takahashi W. Shrinking projection methods for firmly nonexpansive mappings[J]. Nonlinear Anal, 2009,71 : 1626-1632.
  • 9Marino G, Xu H K. Weak and strong convergence theorems for strict pseudo-contractions in Hilbert spaces[J]. J Math Anal Appl ,2007 ,329:336-346.
  • 10Takahashi W. Nonlinear Functional Analysis [M]. Yokohama : Yokohama Publishers, 2000.

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部