摘要
在实的Banach空间中设计了一种新的关于Meir-Keeler压缩映像的粘滞型迭代算法,并利用所提出的算法证明了增生算子零点的强收敛定理.作为应用,在实的Hilbert空间中研究了寻找真下半连续凸泛函的极小值点问题.
In real Banach spaces,many new viscosity-type iterative algorithms with Meir-Keeler contractions are proposed.By using the proposed algorithms,strong convergence theorems of zeros for accretive operator are proved.As an application,the problem of finding a minimizer of a proper lower semicontinuous convex function is considered in real Hilbert spaces.
出处
《西南师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2010年第3期33-36,共4页
Journal of Southwest China Normal University(Natural Science Edition)
基金
国家自然科学基金资助项目(10771050)