期刊文献+

带有特殊不确定性的导弹非线性自适应控制 被引量:6

Nonlinear adaptive controller design for missile system with special uncertainties
下载PDF
导出
摘要 针对一类带有特殊气动参数不确定性的导弹,研究其自动驾驶仪的设计问题。根据导弹俯仰面动力学方程和多项式形式的气动参数,建立系统控制模型。采用基于Nussbaum增益的非线性自适应控制理论,设计导弹俯仰通道的控制器,控制律无需不确定参数的上下界信息,增强了系统的适应性和鲁棒性。该算法使闭环系统所有信号有界,同时保证了跟踪误差收敛于零。数字仿真结果表明,在考虑了各种不确定性的情况下,攻角仍能很好的跟踪指令信号,验证了控制律的正确性和有效性。 The autopilot design for missiles with highly nonlinear in aerodynamics was presented. Firstly,a nonlinear model for the missile in the pitch plane was established. Then,the controller of the missile in the pitch plane,which was based on the nonlinear adaptive control theory with nussbaum gain,was proposed. A priori knowledge of the uncertainty bounds was not required,which enhanced the system robustness. It is proved that all the system signals were bounded and the tracking error converged to zero. Finally,Numeri-cal simulation shows that the angel of attack can track the reference signal very well with system uncertain-ties. The simulation result verifies the correctness and effectiveness of the presented control law.
出处 《电机与控制学报》 EI CSCD 北大核心 2010年第5期104-108,共5页 Electric Machines and Control
基金 总装备部武器装备预研项目(9140A01010108HT0136)
关键词 自动驾驶仪 自适应控制 参数不确定性 非线性系统 NUSSBAUM增益 autopilot adaptive control parameter uncertainties nonlinear system Nussbaum gain
  • 相关文献

参考文献11

二级参考文献48

  • 1陈为胜,李俊民.一类非线性时滞输出反馈系统的自适应控制[J].控制理论与应用,2004,21(5):844-847. 被引量:14
  • 2肖亚伦.飞行器运动方程[M].航空工业出版社,1987..
  • 3Das A, Garal T, Mukhopadhyay S, et al. Feedback linearization for a nonlinear skid to-turn missile model[C]// IEEE India annual Conference, 2004:314 - 317.
  • 4Yeh Fu-Kuang, Cheng Kai-Yuan, Fu Li-Chen, Variable structure based nonlinear missile guidance and autopilot design for a direct hit with thrust vector control[C]//IEEE Conference on Decision and Control, 2002:1275 - 1280,
  • 5Sergey E L, Autopilot design for highly maneuverable multipurpose underwater vehicles [C] // Proceedings of the American Control Conference, 2001 : 131 - 136,
  • 6Galzi D, Shtessel Y. UAV formations control using high order sliding modes[C] // Proceedings of American Control Conference, 2006:4249-4254.
  • 7Dacic B, Subbotin V, Kokotovic V. Control effort reduction in tracking feedback laws[J]. IEEE Transactions on Automatic Control, 2006: 1831 - 1837.
  • 8Bhat S P, Bernstein D S. Lyapunov analysis of finite time convergence differential equations[C]//Proceeding of the American Control Conference, 1995:1831 - 1832.
  • 9Shkolnikov I A, Shtessel Y B. A second-order smooth sliding mode control[C]//Proceedings of the 40th IEEE Conference on Decision and Control, 2001 : 2803 - 2808.
  • 10Bongsob S, Adam H, Karl H. Dynamic surface control design for a class of nonlinear systems[C]//IEEE Conference on Decision and Control, 2001 : 2797 - 2802.

共引文献120

同被引文献51

  • 1Kim S H, Kim Y S, Song C A. Robust adaptive nonlinear control approach to missile autopilot design [J]. Control Engineering Pracrice, 2004, 12 (2): 149-154.
  • 2Tsourdos Antonios, White B A. Adaptive flight control design for nonlinear missile [J]. Control Engineering Practice, 2005, 13 (3) : 373 - 382.
  • 3Uang H J, Chen B S. Robust adaptive optimal tracking design for uncertain missile systems: a fuzzy approach [J]. Fuzzy Sets and Systems, 2002, 126 (1): 63-87.
  • 4Krstic M, Kanellakopoulos L, Kokotovic P V. Nonlinear and Adaptive Control Design[M]. New York: Wiley, 1995.
  • 5ANDERSON O D B, MOORE B J. Optimal Filtering [ M ]. En- glewood Cliffs, NJ: Prentice Hall, 1979.
  • 6WANG Z, YANG F, HO C W D, et al. Robust H∞ Filtering for Stochastic Time-delay Systems with Missing Measurements [ J ]. IEEE Trans Signal Processing, 2006, 54:2579 - 2587.
  • 7KAPILA V, HADDAD MW. Memoryless H∞ Controllers for Dis- crete-time Systems with Time Delay [ J ]. Automatica, 1998, 34 (8): 1141-1144.
  • 8ZHANG Y, XU S, ZOU Y, et al. Delay-dependent Robust Stabi- lization for Uncertain Discrete-time Fuzzy Markovian Jump Systems with Mode-dependent Time Delays [ J ]. Fuzzy Sets and Systems,2011, 164(1) : 66 -81.
  • 9YUE D, LI H. Synchronization Stability of Continuous/Discrete Complex Dynamical Networks with Interval time-varying Delays [ J ]. Neurocomputing, 2010, 73 (4/5/6) : 809 - 819.
  • 10XU S, LAM J, YANG C. H∞ and Positive Real Control for Linear Neutral Delay Systems[ J]. IEEE Trans Automat Control, 2001, 46(8) : 1321 -1326.

引证文献6

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部