期刊文献+

基于小波描述子的水果果形分类 被引量:10

Fruit shape classification based on wavelet descriptor
下载PDF
导出
摘要 水果果形是水果分级的重要指标之一,该文提出了一种基于小波描述子的水果果形分类方法.通过提取水果轮廓计算出半径序列,并进行归一化处理,对归一化后的半径序列进行小波变换提取小波描述子;分别截取小波描述子12、20、36和67个系数点对水果边界进行重建.结果表明:用36个系数点就可较好地重建果形,匹配率为98.64%,用67个系数点可达相当高的精度,为99.96%;选取36个系数点作为果形特征,并运用核主成分分析(KPCA)提取分类所需的7个主要特征输入径向基函数(radial basis function,RBF)神经网络进行分类,发现该方法分级准确率可达90%,效果优于傅里叶描述子,是一种有效地描述水果果形的方法. Shape is one of the most important features in fruit grading.A method for fruit shape classification based on the wavelet descriptor was proposed.Wavelet descriptor was extracted to describe the fruit shape from wavelet transform of the normalized radius sequence which was calculated from the fruit contour.Twelve,twenty,thirty-six and sixty-seven wavelet descriptor coefficients were used on the reconstruction of the fruit border,respectively.It was found that thirty-six coefficients with matching rate of 98.64% were sufficient for representing the shape features,and more accuracy was obtained with sixty-seven coefficients with matching rate of 99.96%.The seven main features were selected as the radial basis function (RBF) neural network input from the thirty-six coefficients using kernel principal component analysis (KPCA).The result indicated that the identification accuracy reached 90% which was better than the Fourier descriptor,showing that this method based on the wavelet descriptor was effective to describe the fruit shape.
出处 《浙江大学学报(农业与生命科学版)》 CAS CSCD 北大核心 2010年第3期322-328,共7页 Journal of Zhejiang University:Agriculture and Life Sciences
基金 江苏省科技支撑计划资助项目(BE2008353)
关键词 水果分级 果形分析 小波变换 小波描述子 fruit grading fruit shape analysis wavelet transform wavelet descriptor
  • 相关文献

参考文献8

二级参考文献31

  • 1吴今培.基于核函数的主成分分析及应用[J].系统工程,2005,23(2):117-120. 被引量:28
  • 2Yi Chuijie, Cheng Daolai, Yao Hongyu, et al. Sound signal analyses on cockpit voice recorder based on cockpit sound decoding system [ C ]//ICDVC-2006. Beijing, China, 2006 : 119 - 122.
  • 3Chen Fei, Han Chongzhao. Time series forecasting based on wavelet KPCA and support vector machines [C ]//International Conference on Automation and Logistics. Jinan, China, 2007 : 1487 - 1491.
  • 4Yang Chihcheng, Lee Wanjui, Lee Shiejue. Learning of kernel functions in support vector machines[C ]//2006 International Joint Conference on Neural Networks. Vancouver, BC, Canada, 2006:16 -21.
  • 5Liu Huanjun, Wang Yaonan, Lu Xiaofen. A method to choose kernel function and its parameters for support vector machines [ C ]//Proceedings of the Fourth International Conference on Machine Learning and Cybernetics. Guangzhou, China, 2005:18-21.
  • 6[1]Sarkar N, Wolfe R R. Computer vision based system for quality separation of fresh market tomatoes[J]. Transactions of the ASAE, 1985, 28(5):1714-1718.
  • 7[2]Sarkar N, Wolfe R R. Feature extraction techniques for sorting tomatoes by compuer vision[J]. Transactions of the ASAE, 1985, 28(3):970-974,979.
  • 8[3]Howarth M S, Brandon J R, Searcy S W, et al. Estimation of tip shape for carrot classification by machine vision[J]. Journal pf Agricultural Engineering Research, 1992, 53(1):123-139.
  • 9[4]Guyer D E, Miles G E, Schreiber M M,et al. Machine vision and image processing for plant identification[J]. Transactions of the ASAE, 1986, 29(6):1500-1507.
  • 10[5]Wolfe R R, Swaminathan M. Determining orientation and shape of bell peppers by machine vision[J]. Transactions of the ASAE, 1987, 30(6):1853-1856.

共引文献112

同被引文献116

引证文献10

二级引证文献60

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部