期刊文献+

温度传感器失效检测与恢复研究 被引量:1

Failure Detection of Temperature Sensors and their Recovery
下载PDF
导出
摘要 针对机床热误差补偿系统中温度传感器故障问题,采用神经网络方法建立各温度传感器间关系模型,提出基于模型的温度传感器故障诊断方法,通过所建立的数学模型来恢复故障传感器数据。笔者给出了相关温度传感器数据神经网络模型的建立方法以及故障传感器检测的策略。仿真实验对比表明:在无传感器故障情况下热误差补偿系统可将20μm内机床热误差控制在1.66μm范围内,而当有传感器故障情况下机床热误差可控制在1.69μm内,相差无几。研究工作表明笔者所提出的传感器失效检测和恢复方法是可行的。 In this paper,neural network method is used to establish the relationship model between the temperature sensors and their faults in a thermal error compensation system.We propose a model-based temperature sensor fault diagnosis method and use an established mathematical model to restore fault sensor data.The related neural network model approach and the detection strategy is given for the fault sensor.Finally,through contrast of two kinds of situations in the simulation experiment,we find that one can compensated 20 μm thermal deformation to 1.66 μm with no fault sensor,and the other can compensated 20 μm thermal deformation to 1.66 μm with fault sensors,showing that the method for fault sensor detection and its data restore is feasible.
出处 《机械科学与技术》 CSCD 北大核心 2010年第6期805-808,共4页 Mechanical Science and Technology for Aerospace Engineering
基金 江苏省精密与微细制造技术重点实验室开放课题基金项目(JSPM200704)资助
关键词 热误差补偿 神经网络 传感器故障诊断 恢复 thermal error compensation neural network sensor fault diagnosis recovery
  • 相关文献

参考文献6

二级参考文献28

  • 1钟丽,袁峰.精密温度测量中传感器热特性对温度场的影响[J].仪器仪表学报,2004,25(z3):158-160. 被引量:4
  • 2沈金华,赵海涛,张宏韬,杨建国.数控机床热补偿中温度变量的选择与建模[J].上海交通大学学报,2006,40(2):181-184. 被引量:28
  • 3鲁远栋,丁国富,阎开印,闫守红,刘立新.数控机床热变形误差研究及补偿应用[J].制造技术与机床,2007(4):25-29. 被引量:10
  • 4刘丽冰.数控机床在线检测及误差补偿关键技术研究:博士学位论文[M].天津:天津大学,1998..
  • 5休斯顿R L 刘又午.多体系统力学(上、下册)[M].天津:天津大学出版社,1987/1991..
  • 6章青.数控机床定位误差建模、参数辨识及补偿技术的研究:博士学位论文[M].天津:天津大学,1995..
  • 7PAPADAKIS V G.. Effect of supplementary cementing materials on concrete resistance against carbonation and chloride ingress [ J ]. Cement and Concrete Research, 2000 (30) :291 - 299.
  • 8ALEXANDER S, DIETER D. Modeling carbonation for corrosion risk prediction of concrete structures [ J]. Cement and Concrete Research, 2002 (32) :935-941.
  • 9RAFIQ M Y, BUGMANN G, EASTERBROOL D J. Neural network design for engineering applications [ J ]. Computers and Structures, 2001 ( 79 ) : 1541-1552.
  • 10PARTHIBAN T, RAVI R, PARTHIBAN G T, et al. Neural network analysis for corrosion of steel in concrete [ J ]. Corrosion Science, 2005 (47) : 1625-1642.

共引文献230

同被引文献13

  • 1胡顺仁 陈伟民 章鹏 等.基于关联分析的传感器连续失效数据识别研究.仪器仪表学报,2008,:72-74.
  • 2AKTAN E, CHASE S, INMAN D, et al. Monitoring and managing the health of infrastructure systems [ C ]. Proc. of the 2001 SPIE Conference on Health Monitoring of Highway Transportation Infrastructure, SPIE, 2001 ( 3 ) : 6-8.
  • 3KO J M, NI Y Q. Technology developments in structural health monitoring of large-scale bridges [ J ]. Engineering Structures, 2005 ( 27 ) : 1715-1725.
  • 4TENNYSON R C, MUFTI A, RIZKALLA S, et al. Struc- tural health monitoring of innovative bridges in Canada with fiber optic sensors [ J ]. Smart Materials and Struc- tures, 2001 (10) :560-573.
  • 5HOUSNER G W, BERGMAN L A, CAUGHEY T K, et al. Structure control : Past, present, and future [ J ]. J. Engi- neering Mechanics, 1997 (9) : 897-971.
  • 6WANG S W, CHEN Y M. Sensor validation and recon- struction for building central chilling systems based on principal component analysis [ J ]. Energy Conversion and Management, 2004(45) : 673-695.
  • 7MAHER A, MICHAEL I F. Sensor validation for struc- tural systems with muhiplicative sensor faults [ J ]. Me- chanical Systems and Signal Processing, 2007 ( 21 ) : 270-279.
  • 8JOE Y Y, DING ZH Q, LING K V, et al. An intelligent sensor network for distributed data rectification and process monitoring [ C ]. 2005 3rd IEEE International Conference on Industrial Informatics (INDIN), 2005: 456-46l.
  • 9HAN J W, KAMBER M, Data mining concept and tech- niques [ M ]. 2nd ed. Morgan Kaufmann Publisher, 2006: 387-388.
  • 10刘琳,黄晓微,陈伟民,等.桥梁健康监控短信报警系统的短信发送器设计[J].仪器仪表学报,2008,29(4):483-486.

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部