期刊文献+

含区间时变时滞的线性不确定系统鲁棒稳定性新判据 被引量:11

New robust stability criteria for uncertain linear systems with interval time-varying delay
原文传递
导出
摘要 研究一类区间时变时滞线性不确定系统的鲁棒稳定性问题.通过引入增广Lyapunov泛函,结合积分不等式方法,导出了区间时变时滞线性系统的时滞相关鲁棒稳定性新判据.与现有方法不同,该方法不涉及自由权矩阵技术和任何模型变换,减少了理论和计算上的复杂性,而且在估计Lyapunov泛函导数的上界时没有忽略某些有用项.数值算例表明,所提出的判据是有效的,具有更低的保守性. The robust stability of linear system with interval time-varying delay is investigated.A delay-dependent robust stability criteria for linear system with interval time-varying delay is derived by using an augmented Lyapunov functional combined with the integral inequality approach.Unlike existing methodologies,the proposed approach involves neither freeweighting matrix nor any model transformation,so that it can reduce the complexity both in theory and in computation.And this approach doesn't ignore some useful terms when estimating the upper bound of the derivative of Lyapunov functional.Numerical examples show the effectiveness and less conservatism of the proposed criteria.
出处 《控制与决策》 EI CSCD 北大核心 2010年第6期953-957,共5页 Control and Decision
关键词 增广Lyapunov泛函 区间时滞 鲁棒稳定 线性矩阵不等式 积分不等式 Augmented Lyapunov functional Interval delay Robust stability Linear matrix inequality(LMI) Integral inequality
  • 相关文献

参考文献14

  • 1Gu K, Kharitonov V L, Chen J. Stability of time-delay systems[M]. Basel: Birkhauser, 2003: 1-17.
  • 2张冬梅,俞立.线性时滞系统稳定性分析综述[J].控制与决策,2008,23(8):841-849. 被引量:41
  • 3Jiang X F, Han Q L. On H∞ control for linear systems with interval time-varying delay[J]. Automatica, 2005, 41(12): 2099-2106.
  • 4Jiang X F, Han Q L. Delay-dependent robust stability for uncertain linear systems with interval time-varying delay[J]. Automatica, 2006, 42(6): 1059-1065.
  • 5He Y, Wang Q G, Lin C, et al. Delay-rangedependent stability for systems with time-varying delay[J]. Automatica, 2007, 43(2): 371-376.
  • 6Jiang X F, Han Q L. New stability criteria for linear systems with interval time-varying delay[J]. Automatica, 2008, 44(10): 2680-2685.
  • 7Chen P, Tian Y C. Delay-dependent robust stability criteria for uncertain systems with interval time-varying delay[J].J of Computational and Applied Mathematics, 2008, 214(2): 480-494.
  • 8Shao H Y. Improved delay-dependent stability criteria for systems with a delay varying in a range[J]. Automatica, 2008, 44(12): 3215-3218.
  • 9Shao H Y. New delay-dependent stability criteria for systems with interval delay[J]. Automatica, 2009, 45(3): 744-749.
  • 10Yue D, Han Q L, Peng C. State feedback controller design of networked control systems[J]. IEEE Trans on Circuits and Systems-II: Express Briefs, 2004, 51(11): 640-644.

二级参考文献74

  • 1廖小昕.动力系统的稳定性理论和应用[M].北京:国防工业出版社,2000.15-30.
  • 2刘和涛.一类时滞微分系统无条件稳定的代数判定.控制理论与应用,1986,1:106-110.
  • 3张作元.滞后型方程x(t)=Ax(f)+Bx(t-r)全时滞稳定的代数判据.数学通报,1986,31(23):1768-1771.
  • 4Repin Y M. Quadratic Lyapunov functionals for systems with delay [J]. Prikladnaya Matematikal Mehanika, 1965, 24(3): 564-566.
  • 5Brierley S D, Lee E B. Solution of the equation A(z)X (z)+X(z)B(z)=C(z) and its application to the stability of generalized linear systems [J]. Int J of Control, 1984, 40(6): 1065-1075.
  • 6Lee E B, Lu W S, Wu N E. A Lyapunov theory for linear time-delay systems [J]. IEEE Trans on Automatic Control, 1986, 31(8): 259-261.
  • 7Agathoklis P, Foda S. Stability and the matrix Lyapunov equation for delay differential systems[J]. Int J of Control, 1989, 49(2):417-432.
  • 8Lefschitz. Stabilty of nonlinear control systems[M]. New York: Academic Press, 1965.
  • 9Razumikin B S. On the stability of systems with delay [J]. Prikladnava Matematikal Mekhanika, 1956, 20 (4) : 500-512.
  • 10Trinh H, Aldeen M. On robustness and stabilization of linear systems with delayed nonlinear perturbations[J]. IEEE Trans on Automatic Control, 1997, 42 (7): 1005-1007.

共引文献40

同被引文献83

引证文献11

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部