期刊文献+

四阶龙格-库塔方法的一种改进算法及地震波场模拟 被引量:7

An improved algorithm of the fourth-order Runge-Kutta method and seismic wave-field simulation
下载PDF
导出
摘要 提出了求解波动方程的四阶龙格-库塔方法的一种改进算法.首先将原四阶龙格-库塔方法合并为两级格式,然后在第一级中引入加权参数以获得加权算法.针对这种改进方法,研究了它的稳定性条件;对一维问题导出了频散关系,给出了数值频散结果,并与四阶的Lax-Wendroff(LWC)方法和位移-应力交错网格方法进行了对比;对二维问题,使用我们的改进方法、四阶LWC和交错网格三种方法进行了声波波场模拟,并进行了计算效率分析和不同方法计算结果的比较;最后选取两个层状介质模型进行了声波和弹性波波场模拟.数值结果表明,本文的改进方法具有非常弱的数值频散和高的计算效率,是一种在地震勘探领域具有巨大应用潜力的数值方法. In this article, we present an improved algorithm of the fourth-order Runge-Kutta (RK) method to solve the wave equations. We first change the original fourth-order Runge-Kutta method into a 2-stage scheme, and then introduce a weighting parameter in the first stage to obtain a weighted scheme. To study this new improved method, first of all, we analyze its stability condition for 1D and 2D cases. Secondly, we derive the dispersion relation for 1D problem and give the numerical dispersion results, and compare the method against the fourth-order Lax-Wendroff correction (LWC) and the displacement-stress staggered-grid methods. Thirdly, for 2D case we use the improved RK, LWC and staggered-grid methods to simulate the acoustic wave fields, and present some comparisons of the computational efficiency and numerical results for different methods. Finally, two layered-medium models are further selected to investigate the computational validity of the acoustic and elastic wave-field simulations. These numerical results show that the improved method has weak numerical dispersion, high computational efficiency, and great potentiality of application in seismic exploration.
出处 《地球物理学报》 SCIE EI CAS CSCD 北大核心 2010年第5期1196-1206,共11页 Chinese Journal of Geophysics
基金 国家杰出青年科学基金(40725012) 国家重点基础研究计划(973)项目(2007CB11 704)资助
关键词 改进的RK方法 波方程 波场模拟 数值频散 Improved RK method Wave equation Wave-field simulation Numerical dispersion
  • 相关文献

参考文献29

  • 1Chen K H.Propagating numerical model of elastic wave in anisotropic in homogeneous media-finite element method.Symposium of 54th SEG,1984,54:631-632.
  • 2Seron F J,Sanz F J,Kindelan M,et al.Finite-element method for elastic wave propagation.Comm.Appl.Numerical Methods,1990,6(2):359-368.
  • 3杨顶辉.双相各向异性介质中弹性波方程的有限元解法及波场模拟[J].地球物理学报,2002,45(4):575-583. 被引量:83
  • 4Alterman Z,Karal F C.Propagation of elastic waves in layered media by finite-difference methods.Bull.Seism.Soc.Am.,1968,58:367-398.
  • 5Kelly K,Ward R,Treitel S,et al.Synthetic seismograms:a finite-difference approach.Geophysics,1976,41:2-27.
  • 6Dablain M A.The application of high-order differencing to the scalar wave equation.Geophysics,1986,51:54-66.
  • 7Virieux J.P-SV wave propagation in heterogeneous media:velocity-stress finite-difference method.Geophysics,1986,41:889-901.
  • 8董良国,马在田,曹景忠,王华忠,耿建华,雷兵,许世勇.一阶弹性波方程交错网格高阶差分解法[J].地球物理学报,2000,43(3):411-419. 被引量:342
  • 9Kosloff D,Baysal E.Forward modeling by a Fourier method.Geophysics,1982,47:1402-1412.
  • 10Huang B S.A program for two-dimensional seismic wave propagation by the pseudo-spectrum method.Comput.Geosci.,1992,18:289-307.

二级参考文献8

共引文献418

同被引文献180

引证文献7

二级引证文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部